感知器算法--python实现
写在前面:
参考:
1 《统计学习方法》第二章感知机【感知机的概念、误分类的判断】 http://pan.baidu.com/s/1hrTscza
2 点到面的距离
3 梯度下降
4 NumPy-快速处理数据 属性shape:表示几行几列; dot(a,b) 计算数组、矩阵的乘积
(为了理解神经网络,我们应该先理解神经网络的组成单元--神经元。神经元也叫做感知器。)

感知器算法:

Python实现:
#coding:utf-8
import numpy as np class Perceptron(object):
def __init__(self):
self.study_step = 1 #学习步长即学习率
self.study_total = 11 #学习次数即训练次数
self.w_total = 1 #w更新次数
#对数据集进行训练
def train(self, T):
w = np.zeros(T.shape[1]-1) # 初始化权重向量为0 [权重都从0开始]
b = 0 # 初始化阈值为0
print ' W X W B'
#训练study_total次
for study in range(self.study_total):
w_before = w #训练前的w值
b_before = b #训练前的b值
#训练
for t in range(T.shape[0]):
# 计算实际的y值,其期望值为T[0][2]
X = T[t][0:T.shape[1]-1] #X的值
Y = T[t][T.shape[1]-1] #期望值
distin = Y*self.input_X(X, w, b)
#判断X是否是误分类点
if distin <= 0:
w = w + self.study_step*Y*X
b = b + self.study_step*Y
print 'w',self.w_total,': x',t+1,w[0:w.shape[0]], ' ', b
self.w_total = self.w_total + 1 #经过训练后w、b都不在变化,说明训练集中已没有误分类点,那么跳出循环
if w_before is w and b_before == b:
print '训练后,得到w、b:', w[0:w.shape[0]], ' ', b
break
return w,b
#得出w*x+b的值
def input_X(self, X, w, b):
return np.dot(X,w) + b #wwww** #由X去预测Y值
def prediction(self, X, w, b):
Y = self.input_X(X, w, b)
return np.where(Y >= 0, 1, -1) if __name__ == '__main__':
per = Perceptron()
#训练数据集,x1=(3,3),x2=(4,3),x3=(1,1), 对应于y1=1,y2=1,y3=-1
T = np.array([[3,3,1],[4,3,1],[1,1,-1]]) #进行训练的数据集
w,b = per.train(T) #经过训练得到w\b X = np.array([3, 3]) # 对X进行预测
Y = per.prediction(X,w,b) #得到X的预测值
print 'X预测得到Y:',Y



感知器算法--python实现的更多相关文章
- 感知器及其Python实现
感知器是由美国计算机科学家罗森布拉特(F.Roseblatt)于1957年提出的.感知器可谓是最早的人工神经网络.单层感知器是一个具有一层神经元.采用阈值激活函数的前向网络.通过对网络权值的训练,可以 ...
- Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...
- 第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法
课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质 ...
- [置顶] 局部加权回归、最小二乘的概率解释、逻辑斯蒂回归、感知器算法——斯坦福ML公开课笔记3
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9113681 最近在看Ng的机器学习公开课,Ng的讲法循循善诱,感觉提高了不少 ...
- Perceptron Algorithm 感知器算法及其实现
Rosenblatt于1958年发布的感知器算法,算是机器学习鼻祖级别的算法.其算法着眼于最简单的情况,即使用单个神经元.单层网络进行监督学习(目标结果已知),并且输入数据线性可分.我们可以用该算法来 ...
- 机器学习之感知器算法原理和Python实现
(1)感知器模型 感知器模型包含多个输入节点:X0-Xn,权重矩阵W0-Wn(其中X0和W0代表的偏置因子,一般X0=1,图中X0处应该是Xn)一个输出节点O,激活函数是sign函数. (2)感知器学 ...
- 【2008nmj】Logistic回归二元分类感知器算法.docx
给你一堆样本数据(xi,yi),并标上标签[0,1],让你建立模型(分类感知器二元),对于新给的测试数据进行分类. 要将两种数据分开,这是一个分类问题,建立数学模型,(x,y,z),z指示[0,1], ...
- 感知器算法PLA
for batch&supervised binary classfication,g≈f <=> Eout(g)≥0 achieved through Eout(g)≈Ein(g ...
- 感知器算法 C++
We can estimate the weight values for our training data using stochastic gradient descent. Stochasti ...
随机推荐
- ThinkPHP 整合 PHPExcel ,数据导出功能实现,解决Invalid cell coordinate
PHPExcel想必大家都不陌生,是用来操作Office Excel 文档的一个PHP类库,它基于微软的OpenXML标准和PHP语言.可以使用它来读取.写入不同格式的电子表格 本次只做数据导出功能的 ...
- ecshop图片上传JPEG格式失败问题
在根目录下找到includes文件目录,在其目录中找到cls_image.php打开并找到: $allow_file_types = '|GIF|JPG|JEPG|PNG|BMP|SWF|'; 此处J ...
- 取消PHPCMS V9后台新版本升级提示信息
方法非常简单,只要找到文件: phpcms/libs/classes/update.class.php 文件,修改第50行的代码(大概位置): function notice() { return $ ...
- 题解 最优的挤奶方案(Optimal Milking)
最优的挤奶方案(Optimal Milking) 时间限制: 1 Sec 内存限制: 128 MB 题目描述 农场主 John 将他的 K(1≤K≤30)个挤奶器运到牧场,在那里有 C(1≤C≤20 ...
- Zabbix 3.2.6安装过程
以3.2.6版本的Zabbix为例展开说明 1.准备Lnmp环境. 本次准备的环境: Linux:2.6.32-642.el6.x86_64 Nginx:1.12.0 Mariadb:10.2.6 P ...
- dubbo与zookeeper的关系
Dubbo建议使用Zookeeper作为服务的注册中心. 1. Zookeeper的作用: zookeeper用来注册服务和进行负载均衡,哪一个服务由哪一个机器来提供必需让调用者知道,简单来说就是 ...
- 基于spring多数据源动态调用及其事务处理
需求: 有些时候,我们需要连接多个数据库,但是,在方法调用前并不知道到底是调用哪个.即同时保持多个数据库的连接,在方法中根据传入的参数来确定. 下图的单数据源的调用和多数据源动态调用的流程,可以看出在 ...
- 如何用JavaScript复制到剪贴板
<!DOCTYPE HTML> <html lang="en-US"> <head> <meta charset="UTF-8& ...
- Notepad++中过滤掉的正则方式
2 => 'ashadv'3 => 'aogro'4 => 'aogs'5 => 'ashamw'6 => 'arc'8 => 'gtsatq'9 => 'b ...
- jquery按钮倒计时
<html> <head> <script src="http://libs.baidu.com/jquery/1.9.0/jquery.js"> ...