单源最短路径问题-Dijkstra算法
同样是层序遍历,在每次迭代中挑出最小的设置为已知
=====================================
2017年9月18日10:00:03
dijkstra并不是完全的层序遍历,在第次迭代中挑出未遍历的最小的边,一种信心的应用
=====================================
dijkstra算法是求带权单顶点到其他顶点的最短路径问题
表初始化
void InitTable(Vertex Start, Graph G, Table T) {
int i;
ReadGraph(G, T);
for (i=; i<NumVertex; i++) {
T[i].Known = False;
T[i].Dist = Infinity;
T[i].Path = NotAVertex;
}
T[Start].dist = ;
}
显示实际路径
void PrintPath(Vertex V, Table T) {
if (T[V].Path != NotAVertex) {
PrintPath(T[V].Path, T);
printf(" to");
}
printf("%v", V);
}
算法伪代码
void Dijkstar(Table) {
Vertex V, W;
for (;;) {
V = smallest unknown distance vertex;
if (V == NotAvertex)
break;
T[V].Known = True;
for each W adjacent to V
if (!T[W].Known)
if (T[V].Dist + Cvw < T[W].Dist) {
Decrease(T[W].Dist);
T[W].Path = V;
}
}
}
单源最短路径问题-Dijkstra算法的更多相关文章
- 单源最短路径(dijkstra算法)php实现
做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么( ...
- 【算法导论】单源最短路径之Dijkstra算法
Dijkstra算法解决了有向图上带正权值的单源最短路径问题,其运行时间要比Bellman-Ford算法低,但适用范围比Bellman-Ford算法窄. 迪杰斯特拉提出的按路径长度递增次序来产生源点到 ...
- 单源最短路径:Dijkstra算法(堆优化)
前言:趁着对Dijkstra还有点印象,赶快写一篇笔记. 注意:本文章面向已有Dijkstra算法基础的童鞋. 简介 单源最短路径,在我的理解里就是求从一个源点(起点)到其它点的最短路径的长度. 当然 ...
- 0016:单源最短路径(dijkstra算法)
题目链接:https://www.luogu.com.cn/problem/P4779 题目描述:给定一个 n 个点,m 条有向边的带非负权图,计算从 s 出发,到每个点的距离. 这道题就是一个单源最 ...
- 单源最短路径问题(dijkstra算法 及其 优化算法(优先队列实现))
#define _CRT_SECURE_NO_WARNINGS /* 7 10 0 1 5 0 2 2 1 2 4 1 3 2 2 3 6 2 4 10 3 5 1 4 5 3 4 6 5 5 6 9 ...
- 【算法设计与分析基础】25、单起点最短路径的dijkstra算法
首先看看这换个数据图 邻接矩阵 dijkstra算法的寻找最短路径的核心就是对于这个节点的数据结构的设计 1.节点中保存有已经加入最短路径的集合中到当前节点的最短路径的节点 2.从起点经过或者不经过 ...
- 【算法导论】单源最短路径之Bellman-Ford算法
单源最短路径指的是从一个顶点到其它顶点的具有最小权值的路径.我们之前提到的广度优先搜索算法就是一种无权图上执行的最短路径算法,即在所有的边都具有单位权值的图的一种算法.单源最短路径算法可以解决图中任意 ...
- 单源最短路——dijkstra算法
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 问 ...
- 单源点最短路径的Dijkstra算法
在带权图(网)里,点A到点B所有路径中边的权值之和为最短的那一条路径,称为A,B两点之间的最短路径;并称路径上的第一个顶点为源点(Source),最后一个顶点为终点(Destination).在无权图 ...
随机推荐
- 201521123026《JAVA程序设计》第11周学习总结
1. 本章学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 1.多线程同步:限制某个资源在同一时刻只能被一个线程访问.. 2.同步代码块:`synchronized(lock ...
- 201521123024 《Java程序设计》 第九周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1.常用异常 题目5-1 1.1 截图你的提交结果(出现学号) 1.2 自己 ...
- 数据结构与算法->树->2-3-4树的查找,添加,删除(Java)
代码: 兵马未动,粮草先行 作者: 传说中的汽水枪 如有错误,请留言指正,欢迎一起探讨. 转载请注明出处. 目录 一. 2-3-4树的定义 二. 2-3-4树数据结构定义 三. 2-3-4树的可以得到 ...
- RSA原理、ssl认证、Tomcat中配置数字证书以及网络传输数据中的密码学知识
情形一:接口的加.解密与加.验签 rsa不是只有加密解密,除此外还有加签和验签.之前一直误以为加密就是加签,解密就是验签.这是错误的! 正确的理解是: 数据传输的机密性:公钥加密私钥解密是密送,保 ...
- PHP 动态调整内存限制
最近公司的一个PHP项目在操作大文件的时候总是抛出这个异常 Fixing PHP Fatal Error: Allowed Memory Size Exhausted 经过一番调试后发现是达到了PHP ...
- scoke摘要
登录|注册 关闭 永不磨灭的意志 /* ----------------500G的电影拷到了U盘上,U盘的重量会不会增加?----------------------*/ 目录 ...
- Bmob云IM实现头像更换并存入Bmob云数据库中(1.拍照替换,2.相册选择)
看图效果如下: 1.个人资料界面 2.点击头像弹出对话框 3.点击拍照 4.切割图片,选择合适的部分 5.点击保存,头像替换完毕,下面看从相册中选择图片. 6.点击相册 7.任选一张图片 8.切割图片 ...
- 数据分析前戏:ipython使用技巧(上)
不一定非得使用Jupyter Notebook,试试ipython命令行 安装 ipython 我只试过Windows 10环境下的. 1.安装python安装包之后,应该就有ipython了. 2. ...
- JavaScript高级(01)
前端开发工具 1.1. WebStorm介绍和下载 l 介绍 WebStorm是JetBrains 推出的一款强大的HTML5编辑工具,拥有丰富的代码快速编辑,可以智能的补全代码.代码格式化.htm ...
- Ionic3学习笔记(四)修改返回按钮文字、颜色
本文为原创文章,转载请标明出处 目录 修改返回按钮文字 修改返回按钮颜色 1. 修改返回按钮文字 参考官网 Ionic API---Config 文档 可在 ./src/app/app.module. ...