LeetCode 53. Maximum Subarray(最大的子数组)
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4]
,
the contiguous subarray [4,-1,2,1]
has the largest sum = 6
.
click to show more practice.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
题目标签:Array
Java Solution 1:
Runtime beats 71.37%
完成日期:03/28/2017
关键词:Array
关键点:基于 Kadane's Algorithm 改变
public class Solution
{
public int maxSubArray(int[] nums)
{
// Solution 1: O(n)
// check param validation.
if(nums == null || nums.length == 0)
return 0; int sum = 0;
int max = Integer.MIN_VALUE; // iterate nums array.
for (int i = 0; i < nums.length; i++)
{
// choose a larger one between current number or (previous sum + current number).
sum = Math.max(nums[i], sum + nums[i]);
max = Math.max(max, sum); // choose the larger max.
} return max;
} }
Java Solution 2:
Runtime beats 71.37%
完成日期:03/28/2017
关键词:Array
关键点:Kadane's Algorithm
public class Solution
{
public int maxSubArray(int[] nums)
{
int max_ending_here = 0;
int max_so_far = Integer.MIN_VALUE; for(int i = 0; i < nums.length; i++)
{
if(max_ending_here < 0)
max_ending_here = 0;
max_ending_here += nums[i];
max_so_far = Math.max(max_so_far, max_ending_here);
}
return max_so_far;
} }
Java Solution 3:
Runtime beats 29.96%
完成日期:03/29/2017
关键词:Array
关键点:Divide and Conquer
public class Solution
{
public int maxSubArray(int[] nums)
{
// Solution 3: Divide and Conquer. O(nlogn)
if(nums == null || nums.length == 0)
return 0; return Max_Subarray_Sum(nums, 0, nums.length-1);
} public int Max_Subarray_Sum(int[] nums, int left, int right)
{
if(left == right) // base case: meaning there is only one element.
return nums[left]; int middle = (left + right) / 2; // calculate the middle one. // recursively call Max_Subarray_Sum to go down to base case.
int left_mss = Max_Subarray_Sum(nums, left, middle);
int right_mss = Max_Subarray_Sum(nums, middle+1, right); // set up leftSum, rightSum and sum.
int leftSum = Integer.MIN_VALUE;
int rightSum = Integer.MIN_VALUE;
int sum = 0; // calculate the maximum subarray sum for right half part.
for(int i=middle+1; i<= right; i++)
{
sum += nums[i];
rightSum = Integer.max(rightSum, sum);
} sum = 0; // reset the sum to 0. // calculate the maximum subarray sum for left half part.
for(int i=middle; i>= left; i--)
{
sum += nums[i];
leftSum = Integer.max(leftSum, sum);
} // choose the max between left and right from down level.
int res = Integer.max(left_mss, right_mss);
// choose the max between res and middle range. return Integer.max(res, leftSum + rightSum); } }
参考资料:
http://www.cnblogs.com/springfor/p/3877058.html
https://www.youtube.com/watch?v=ohHWQf1HDfU
LeetCode 算法题目列表 - LeetCode Algorithms Questions List
LeetCode 53. Maximum Subarray(最大的子数组)的更多相关文章
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- 41. leetcode 53. Maximum Subarray
53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...
- Leetcode#53.Maximum Subarray(最大子序和)
题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...
- LN : leetcode 53 Maximum Subarray
lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...
- leetcode 53. Maximum Subarray 、152. Maximum Product Subarray
53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...
- leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) whic ...
- [LeetCode] 53. Maximum Subarray 最大子数组
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [LeetCode] Minimum Size Subarray Sum 最短子数组之和
Given an array of n positive integers and a positive integer s, find the minimal length of a subarra ...
- C#解leetcode 53.Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
随机推荐
- 多线程:深入Thread.sleep
一直都说,Threed.sleep是不会释放锁,而wait是释放锁的(对象锁),现理论上来分析一下. 由于CPU分配的每个线程的时间片极为短暂(一般为几十毫秒),所以,CPU通过不停地切换线程执行,这 ...
- panda库2
>>> a=pd.Series([1,2],index=['a','b']) >>> a a 1 b 2 dtype: int64 >>> b=p ...
- JSP第四篇【EL表达式介绍、获取各类数据、11个内置对象、执行运算、回显数据、自定义函数、fn方法库】
什么是EL表达式? 表达式语言(Expression Language,EL),EL表达式是用"${}"括起来的脚本,用来更方便的读取对象! EL表达式主要用来读取数据,进行内容的 ...
- String ua = request.getHeader("user-agent")---ua值为null
最近在修改错误日志,发现总报空指针,追踪代码发现这个ua的值有时候会为null,上网查了半天也无果,按常理说ua的值不可能为null,俩小时没找到原因,只是将ua判null了一下,记录一下,如果有大虾 ...
- Django查询数据库性能优化
现在有一张记录用户信息的UserInfo数据表,表中记录了10个用户的姓名,呢称,年龄,工作等信息. models文件 from django.db import models class Job(m ...
- 记录一次无聊的(经历了Nodejs -> Shell -> C)的探索问题过程
提出问题 在运行项目的服务器的git是1.8.3.1版本的时候,pm2 deploy 项目,服务器fetch不到最新的一次commit. 对于这个问题,在pm2的github也有issues讨论.然后 ...
- 第4章 同步控制 Synchronization ----死锁(DeadLock)
Jeffrey Richter 在他所主持的 Win32 Q&A 专栏(Microsoft Systems Journal,1996/07)中曾经提到过,Windows NT 和 Window ...
- APUE 4 - 线程
对传统的UNIX进程来讲,一个进程中只有一个线程,这就意味着一个进程在同一时刻只能做一件事(即使是多核CPU).使用多线程技术, 我们可以设计程序使得一个进程在同一时刻做多件事.使用多线程编程具有以下 ...
- 再起航,我的学习笔记之JavaScript设计模式28(委托模式)
## 委托模式 ### 概念介绍 **委托模式(Entrust): **多个对象接收并处理同一请求,他们将请求委托给另一个对象统一处理请求. ### 利用委托优化循环 如果我们有一个需求需要让用户点击 ...
- 从入门到精通之Boyer-Moore字符串搜索算法详解
本文讲述的是Boyer-Moore算法,Boyer-Moore算法作为字符串搜索算法,兴趣之下就想了解这个算法,发现这个算法一开始还挺难理解的,也许是我理解能力不是很好吧,花了小半天才看懂,看懂了过后 ...