LeetCode 53. Maximum Subarray(最大的子数组)
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.
click to show more practice.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
题目标签:Array
Java Solution 1:
Runtime beats 71.37%
完成日期:03/28/2017
关键词:Array
关键点:基于 Kadane's Algorithm 改变
public class Solution
{
public int maxSubArray(int[] nums)
{
// Solution 1: O(n)
// check param validation.
if(nums == null || nums.length == 0)
return 0; int sum = 0;
int max = Integer.MIN_VALUE; // iterate nums array.
for (int i = 0; i < nums.length; i++)
{
// choose a larger one between current number or (previous sum + current number).
sum = Math.max(nums[i], sum + nums[i]);
max = Math.max(max, sum); // choose the larger max.
} return max;
} }
Java Solution 2:
Runtime beats 71.37%
完成日期:03/28/2017
关键词:Array
关键点:Kadane's Algorithm
public class Solution
{
public int maxSubArray(int[] nums)
{
int max_ending_here = 0;
int max_so_far = Integer.MIN_VALUE; for(int i = 0; i < nums.length; i++)
{
if(max_ending_here < 0)
max_ending_here = 0;
max_ending_here += nums[i];
max_so_far = Math.max(max_so_far, max_ending_here);
}
return max_so_far;
} }
Java Solution 3:
Runtime beats 29.96%
完成日期:03/29/2017
关键词:Array
关键点:Divide and Conquer
public class Solution
{
public int maxSubArray(int[] nums)
{
// Solution 3: Divide and Conquer. O(nlogn)
if(nums == null || nums.length == 0)
return 0; return Max_Subarray_Sum(nums, 0, nums.length-1);
} public int Max_Subarray_Sum(int[] nums, int left, int right)
{
if(left == right) // base case: meaning there is only one element.
return nums[left]; int middle = (left + right) / 2; // calculate the middle one. // recursively call Max_Subarray_Sum to go down to base case.
int left_mss = Max_Subarray_Sum(nums, left, middle);
int right_mss = Max_Subarray_Sum(nums, middle+1, right); // set up leftSum, rightSum and sum.
int leftSum = Integer.MIN_VALUE;
int rightSum = Integer.MIN_VALUE;
int sum = 0; // calculate the maximum subarray sum for right half part.
for(int i=middle+1; i<= right; i++)
{
sum += nums[i];
rightSum = Integer.max(rightSum, sum);
} sum = 0; // reset the sum to 0. // calculate the maximum subarray sum for left half part.
for(int i=middle; i>= left; i--)
{
sum += nums[i];
leftSum = Integer.max(leftSum, sum);
} // choose the max between left and right from down level.
int res = Integer.max(left_mss, right_mss);
// choose the max between res and middle range. return Integer.max(res, leftSum + rightSum); } }
参考资料:
http://www.cnblogs.com/springfor/p/3877058.html
https://www.youtube.com/watch?v=ohHWQf1HDfU
LeetCode 算法题目列表 - LeetCode Algorithms Questions List
LeetCode 53. Maximum Subarray(最大的子数组)的更多相关文章
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- 41. leetcode 53. Maximum Subarray
53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...
- Leetcode#53.Maximum Subarray(最大子序和)
题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...
- LN : leetcode 53 Maximum Subarray
lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...
- leetcode 53. Maximum Subarray 、152. Maximum Product Subarray
53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...
- leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) whic ...
- [LeetCode] 53. Maximum Subarray 最大子数组
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [LeetCode] Minimum Size Subarray Sum 最短子数组之和
Given an array of n positive integers and a positive integer s, find the minimal length of a subarra ...
- C#解leetcode 53.Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
随机推荐
- python2/python3 内存中打包/压缩文件
python2:(包含压缩选项,如果只打包,可以调整zipfile.ZIP_DEFLATED) import zipfile import StringIO class InMemoryZip(obj ...
- lintcode.245 子树
子树 描述 笔记 数据 评测 有两个不同大小的二进制树: T1 有上百万的节点: T2 有好几百的节点.请设计一种算法,判定 T2 是否为 T1的子树. 注意事项 若 T1 中存在从节点 n 开始 ...
- [03] Servlet继承关系和生命周期
1.Servlet的继承关系 假如现有我们自定义的一个Servlet,继承HttpServlet,那么实际上它的继承链如下图: 可以看到,核心的部分在于: 两个顶级接口 Servlet Servl ...
- Oracle-更新字段-一张表的字段更新另一张的表的字段
设备表ops_device_info中的终端号terminal_id值是以 'D'开头的字符串,而终端表ops__terminal_info中的终端号terminal_id是8位字符串, 它们之间是通 ...
- eclipse设置背景保护色及常用设置
1.设置背景颜色 2.代码自动补全 Windows-->Preferences-->Java-->Editor-->Content Asist,在Auto activation ...
- JVM菜鸟进阶高手之路十(基础知识开场白)
转载请注明原创出处,谢谢! 最近没有什么实战,准备把JVM知识梳理一遍,先以开发人员的交流来谈谈jvm这块的知识以及重要性,依稀记得2.3年前用solr的时候老是经常oom,提到oom大家应该都不陌生 ...
- [js高手之路] html5 canvas系列教程 - 掌握画直线图形的常用API
我们接着上文[js高手之路] html5 canvase系列教程 - 认识canvas以及基本使用方法继续. 一.直线的绘制 cxt.moveTo( x1, y1 ): 将画笔移动到x1, y1这个点 ...
- 9月24日noip模拟赛解题报告
1.校门外的树(tree.c/cpp/pas 128M,1s) Description LSGJ扩建了,于是校门外有了一条长为L的路.路上种了一排的树,每相邻两棵树之间的距离为1,我们可以把马路看成一 ...
- vue学习之父组件与子组件之间的交互
1.父组件数据传给子组件 父组件中的msgfather定义数据 在之组件中通过设置props来取得希望从父组件中获得的值 通过设置这两个属性就可以从父组件传数据到子组件 2.子组件传数据给父组件(这里 ...
- Elixir游戏服设计五
在<Elixir游戏服设计一>里提到,按照系统功能划分成app要保证原子性很难, 现在想想也没那么难.保证原子性,无非就是需要某个单点去完成操作.那么选择玩家进程去做原子性工作就可以了. ...