作者:桂。

时间:2017-05-31  21:14:56

链接:http://www.cnblogs.com/xingshansi/p/6925955.html


前言

VQ(Vector Quantization)是一个常用的压缩技术,本文主要回顾:

  1)VQ原理

  2)基于VQ的说话人识别(SR,speaker recognition)技术

〇、分类问题

说话人识别其实也是一个分类问题:

说话人识别技术,主要有这几大类方法:

  • 模板匹配方法

这类方法比较成熟,主要原理:特征提取、模板训练、匹配。典型的有:动态时间规整DTW,矢量量化VQ等。

DTW利用动态规划的思想,但也有不足:1)过分依赖VAD技术;2)没有充分利用语音的时序动态特性,所以被HMM取代也就容易理解了。

VQ算法是数据压缩的方法。码本简历、码字搜索是两个基本问题,码本简历是从大量信号样本中训练出比较好的码书,码字搜索是找到一个和输入最匹配的码字,该方法简单,对小系统、差别明显的声音较合适。

  • 基于统计模型的分类方法

该类方法本质仍是模式识别系统,都需要提取特征,然后训练分类器,最后分类决策,典型框架:

常用的模型有:GMM、HMM、SVM、ANN、DNN或者各种联合模型等。

GMM基本框架:

类似的还有GMM-UBM(Universal background model)算法,其与GMM的区别在于:对L类整体样本训练一个大的GMM,而不像GMM对每一类训练一个GMM模型。SVM的话MFCC作为特征,每一帧作为一个样本,可以借助VAD删除无效音频段,直接训练分类。近年来也有利用稀疏表达的方法:

一、VQ原理

此段摘自Pluskid博客

Vector Quantization 这项技术广泛地用在信号处理以及数据压缩等领域。事实上,在 JPEG 和 MPEG-4 等多媒体压缩格式里都有 VQ 这一步。

  Vector Quantization 这个名字听起来有些玄乎,其实它本身并没有这么高深。大家都知道,模拟信号是连续的值,而计算机只能处理离散的数字信号,在将模拟信号转换为数字信号的时候,我们可以用区间内的某一个值去代替着一个区间,比如,[0, 1) 上的所有值变为 0 ,[1, 2) 上的所有值变成 1 ,如此类推。其这就是一个 VQ 的过程。一个比较正式一点的定义是:VQ 是将一个向量空间中的点用其中的一个有限子集来进行编码的过程。

  一个典型的例子就是图像的编码。最简单的情况,考虑一个灰度图片,0 为黑色,1 为白色,每个像素的值为 [0, 1] 上的一个实数。现在要把它编码为 256 阶的灰阶图片,一个最简单的做法就是将每一个像素值 x 映射为一个整数 floor(x*255) 。当然,原始的数据空间也并不以一定要是连续的。比如,你现在想要把压缩这个图片,每个像素只使用 4 bit (而不是原来的 8 bit)来存储,因此,要将原来的 [0, 255] 区间上的整数值用 [0, 15] 上的整数值来进行编码,一个简单的映射方案是 x*15/255 。

  不过这样的映射方案颇有些 Naive ,虽然能减少颜色数量起到压缩的效果,但是如果原来的颜色并不是均匀分布的,那么的出来的图片质量可能并不是很好。例如,如果一个 256 阶灰阶图片完全由 0 和 13 两种颜色组成,那么通过上面的映射就会得到一个全黑的图片,因为两个颜色全都被映射到 0 了。一个更好的做法是结合聚类来选取代表性的点。

实际做法就是:将每个像素点当作一个数据,跑一下 K-means ,得到 k 个 centroids ,然后用这些 centroids 的像素值来代替对应的 cluster 里的所有点的像素值。对于彩色图片来说,也可以用同样的方法来做,例如 RGB 三色的图片,每一个像素被当作是一个 3 维向量空间中的点。

用本文开头那张 Rechard Stallman 大神的照片来做一下实验好了,VQ 2、VQ 10 和 VQ 100 三张图片分别显示聚类数目为 2 、10 和 100 时得到的结果:

传统LBG算法就是K-means,基于分裂的LBG称为LBG-VQ,LBG-VQ算法以及K-means:

 二、基于VQ的说话人识别技术

基于VQ方法:例如N个说话人,每个说话人建立一个码本,共N个码本。每个码本如何建立呢?以MFCC为例,M帧的MFCC,每一帧都是一个多维N的样本点,训练数据量通常较大MxN,聚类成K类是容易实现的(K<<M),LBG-VQ的思路则是利用分裂的思想,通常按倍数递增,知道码本数量增加到:码本的误差达到预设值停止,最终的结果相当于降维:KxN,也就是码本的维度。

总结一下基于VQ的说话人识别的基本思路:

1)训练:分别针对每个说话人提取特征,利用特征训练码本(Kmeans/LBG-VQ等方法);

2)识别:提取测试数据的特征,与码本匹配,误差距离归一化并求和,最小值即为对应的说话人;

VQLBG代码

%% VQLBG Vector quantization using the Linde-Buzo-Gray algorithm
% VQLBG Vector quantization using the Linde-Buzo-Gray algorithm
%
% Inputs: d contains training data vectors (one per column)
% k is number of centroids required
%
% Output: r contains the result VQ codebook (k columns, one for each centroids) function r = vqlbg(d,k)
e = .01;
r = mean(d, 2);
dpr = 10000;
for i = 1:log2(k)
r = [r*(1+e), r*(1-e)];
while (1 == 1)
z = disteu(d, r);
[m,ind] = min(z, [], 2);
t = 0;
for j = 1:2^i
r(:, j) = mean(d(:, find(ind == j)), 2); %#ok<FNDSB>
x = disteu(d(:, find(ind == j)), r(:, j)); %#ok<FNDSB>
for q = 1:length(x)
t = t + x(q);
end
end
if (((dpr - t)/t) < e)
break;
else
dpr = t;
end
end
end
end
%% DISTEU Function
% DISTEU Pairwise Euclidean distances between columns of two matrices
%
% Input:
% x, y: Two matrices whose each column is an a vector data.
%
% Output:
% d: Element d(i,j) will be the Euclidean distance between two
% column vectors X(:,i) and Y(:,j)
%
% Note:
% The Euclidean distance D between two vectors X and Y is:
% D = sum((x-y).^2).^0.5 function d = disteu(x, y)
[M, N] = size(x);
[M2, P] = size(y);
if (M ~= M2)
error('Matrix dimensions do not match.')
end
d = zeros(N, P);
% if (N < P)
% copies = zeros(1,P);
% for n = 1:N
% d(n,:) = sum((x(:, n+copies) - y) .^2, 1);
% end
% else
% copies = zeros(1,N);
% for p = 1:P
% d(:,p) = sum((x - y(:, p+copies)) .^2, 1)';
% end
% end
% d = d.^0.5;
for ii=1:N
for jj=1:P
%d(ii,jj)=sum((x(:,ii)-y(:,jj)).^2).^0.5;
d(ii,jj) = mydistance(x(:,ii),y(:,jj),2);
end
end
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
end

  识别的主要code:

v = mfcc(str{classe},fstr{classe});
% Current distance and sound ID initialization
distmin = Inf;
k1 = 0;
for ii=1:sound_number
d = disteu(v, code{ii});
dist = sum(min(d,[],2)) / size(d,1);
if dist < distmin
distmin = dist;
k1 = ii;
end
end
min_index = k1;

    

参考

  • http://blog.pluskid.org/?p=57
  • http://blog.csdn.net/momosp/article/details/7626971

矢量量化(VQ)的更多相关文章

  1. 语音信号处理之(三)矢量量化(Vector Quantization)

    语音信号处理之(三)矢量量化(Vector Quantization) zouxy09@qq.com http://blog.csdn.net/zouxy09 这学期有<语音信号处理>这门 ...

  2. 【机器学习】【数字信号处理】矢量量化(Vector Quantization)

    http://blog.csdn.net/zouxy09 这学期有<语音信号处理>这门课,快考试了,所以也要了解了解相关的知识点.呵呵,平时没怎么听课,现在只能抱佛脚了.顺便也总结总结,好 ...

  3. K-means算法和矢量量化

    语音信号的数字处理课程作业——矢量量化.这里采用了K-means算法,即假设量化种类是已知的,当然也可以采用LBG算法等,不过K-means比较简单.矢量是二维的,可以在平面上清楚的表示出来. 1. ...

  4. 2000_narrowband to wideband conversion of speech using GMM based transformation

    论文地址:基于GMM的语音窄带到宽带转换 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/12151027.html 摘要 在不改变现有通信网络的情 ...

  5. 乘积量化(Product Quantization)

    乘积量化 1.简介 乘积量化(PQ)算法是和VLAD算法是由法国INRIA实验室一同提出来的,为的是加快图像的检索速度,所以它是一种检索算法,在矢量量化(Vector Quantization,VQ) ...

  6. Atitit 语音识别的技术原理

    Atitit 语音识别的技术原理 1.1. 语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),2 1.2. 模型目前,主流的大词汇量语音识别系统多 ...

  7. 关于NMF(Non-negative Matrix Factorization )

    著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...

  8. 非负矩阵分解NMF

    http://blog.csdn.net/pipisorry/article/details/52098864 非负矩阵分解(NMF,Non-negative matrix factorization ...

  9. Android性能优化-减小图片下载大小

    原文链接 https://developer.android.com/topic/performance/network-xfer.html 内容概要 理解图片的格式 PNG JPG WebP 如何选 ...

随机推荐

  1. css 实现旋转八卦图

    虽然这不算什么亮点,不过也可以供路上的小伙伴学习下 直接上干货: <!doctype html> <html lang="en"> <head> ...

  2. 你绝对想不到R文件找不到(cannot resolve symbol R)的原因

    你绝对想不到R文件找不到(cannot resolve symbol R)的原因 最近在项目开发中 Android Studio 的 R 文件突然找不到了.IDE 中出现了以下提示 cannot re ...

  3. 你不得不知的逻辑或(||)与(&&)非(!)

    最近重新翻开原生JS,又得到很多不同的体会,虽然现在开发框架那么多,但很多思想都还是离不开原生的基础.今天呢,我就根据自己的学习总结一下逻辑与(&&)和(逻辑或(||)和逻辑非(!). ...

  4. STAR法则的感想

    STAR法则百度百科上被解释为,面试官用于收集面试者信息的工具,而我个人理解,它更像是一个表达技巧,叙述结构,我们先来看看什么是STAR法则: STAR法则,即为Situation Task Acti ...

  5. Kindle PaperWhite3 越狱和PDF插件的安装

    下载所需工具 这里分享的文件是这个教程中所需要的所有文件 所有工具下载链接:http://pan.baidu.com/s/1c249P2S 密码:ozc7 一.准备工作 本越狱方法仅适用于 KO.KV ...

  6. IOS 程序运行过程

    第一次写有点小紧张  希望大家多多指教! 主要讲讲程序从点击运行到结束这个过程中后面的代码都有哪些变化. 首先先了解一下UIApplication.UIApplication的核心作用是提供IOS运行 ...

  7. java复习(8)---I/O

    本节复习java常用i/o,输入输出流. 先放上样例代码.方便参考,可以轻松看懂. package re08; import java.io.*; import java.util.Scanner; ...

  8. 有关 json对象 取出其中数据问题

    这几天,在做一个ajax异步提交的小功能,发现从ashx中传递过来的string 类型的数据,一直拿不到(当时是指的是json点不出来),傻傻的自己,一直在找其他的方法,看看其他那里出了错误,最后,那 ...

  9. react 各种UI框架

    共计bfd-ui,react-amaze-ui,react-ant-design,react-material-ui,react-components,react-desktop,react-ui,s ...

  10. callLater

    UIComponent的方法,该方法在每次更新屏幕之前,Flash Player 或 AIR 都会调用为更新预定的函数集.有时,应在下次更新时调用函数,以执行为当前更新预定的其余代码.部分功能(如效果 ...