此文已由作者赵计刚授权网易云社区发布。

欢迎访问网易云社区,了解更多网易技术产品运营经验。

1、guava cache

  • 当下最常用最简单的本地缓存

  • 线程安全的本地缓存

  • 类似于ConcurrentHashMap(或者说成就是一个ConcurrentHashMap,只是在其上多添加了一些功能)

2、使用实例

具体在实际中使用的例子,去查看《第七章 企业项目开发--本地缓存guava cache》,下面只列出测试实例:

import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit; import com.google.common.cache.CacheBuilder;
import com.google.common.cache.CacheLoader;
import com.google.common.cache.LoadingCache; public class Hello{
    
    LoadingCache<String, String> testCache = CacheBuilder.newBuilder()
            .expireAfterWrite(20, TimeUnit.MINUTES)// 缓存20分钟
            .maximumSize(1000)// 最多缓存1000个对象
            .build(new CacheLoader<String, String>() {
                public String load(String key) throws Exception {
                    if(key.equals("hi")){
                        return null;
                    }
                    return key+"-world";
                }
            });
    
    public static void main(String[] args){
        Hello hello = new Hello();
        System.out.println(hello.testCache.getIfPresent("hello"));//null
        hello.testCache.put("123", "nana");//存放缓存
        System.out.println(hello.testCache.getIfPresent("123"));//nana
        try {
            System.out.println(hello.testCache.get("hello"));//hello-world
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
        System.out.println(hello.testCache.getIfPresent("hello"));//hello-world
        /***********测试null*************/
        System.out.println(hello.testCache.getIfPresent("hi"));//null
        try {
            System.out.println(hello.testCache.get("hi"));//抛异常
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
        
    }
}

在这个方法中,基本已经覆盖了guava cache常用的部分。

  • 构造缓存器

    • 缓存器的构建没有使用构造器而不是使用了构建器模式,这是在存在多个可选参数的时候,最合适的一种配置参数的方式,具体参看《effective Java(第二版)》第二条建议。

  • 常用的三个方法

    • get(Object key)

    • getIfPresent(Object key)

    • put(Object key, Object value)

3、源代码

在阅读源代码之前,强烈建议,先看一下"Java并发包类源码解析"中的《第二章 ConcurrentHashMap源码解析》,链接如下:

http://www.cnblogs.com/java-zhao/p/5113317.html

对于源码部分,由于整个代码的核心类LocalCache有5000多行,所以只介绍上边给出的实例部分的相关源码解析。本节只说一下缓存器的构建,即如下代码部分:

    LoadingCache<String, String> testCache = CacheBuilder.newBuilder()
            .expireAfterWrite(20, TimeUnit.MINUTES)// 缓存20分钟(时间起点:entry的创建或替换(即修改))
            //.expireAfterAccess(10, TimeUnit.MINUTES)//缓存10分钟(时间起点:entry的创建或替换(即修改)或最后一次访问)
            .maximumSize(1000)// 最多缓存1000个对象
            .build(new CacheLoader<String, String>() {
                public String load(String key) throws Exception {
                    if(key.equals("hi")){
                        return null;
                    }
                    return key+"-world";
                }
            });

说明:该代码的load()方法会在之后将get(Object key)的时候再说,这里先不说了。

对于这一块儿,由于guava cache这一块儿的代码虽然不难,但是容易看的跑偏,一会儿就不知道跑到哪里去了,所以我下边先给出guava cache的数据结构以及上述代码的执行流程,然后大家带着这个数据结构和执行流程去分析下边的源代码,分析完源代码之后,我在最后还会再将cache的数据结构和构建缓存器的执行流程给出,并会结合我们给出的开头实例代码来套一下整个流程,最后画出初始化构建出来的缓存器(其实,这个缓存器就是上边以及文末给出的cache的数据结构图)。

guava cache的数据结构图:


需要说明的是:

  • 每一个Segment中的有效队列(废弃队列不算)的个数最多可能不止一个

  • 上图与ConcurrentHashMap及其类似,其中的ReferenceEntry[i]用于存放key-value

  • 每一个ReferenceEntry[i]都会存放一个链表,当然采用的也是Entry替换的方式。

  • 队列用于实现LRU缓存回收算法

  • 多个Segment之间互不打扰,可以并发执行

  • 各个Segment的扩容只需要扩自己的就好,与其他Segment无关

  • 根据需要设置好初始化容量与并发水平参数,可以有效避免扩容带来的昂贵代价,但是设置的太大了,又会耗费很多内存,要衡量好

后边三条与ConcurrentHashMap一样

guava cache的数据结构的构建流程:

1)构建CacheBuilder实例cacheBuilder

2)cacheBuilder实例指定缓存器LocalCache的初始化参数

3)cacheBuilder实例使用build()方法创建LocalCache实例(简单说成这样,实际上复杂一些)

3.1)首先为各个类变量赋值(通过第二步中cacheBuilder指定的初始化参数以及原本就定义好的一堆常量)

3.2)之后创建Segment数组

3.3)最后初始化每一个Segment[i]

3.3.1)为Segment属性赋值

3.3.2)初始化Segment中的table,即一个ReferenceEntry数组(每一个key-value就是一个ReferenceEntry)

3.3.3)根据之前类变量的赋值情况,创建相应队列,用于LRU缓存回收算法

类结构:(这个不看也罢)

  • CacheBuilder:设置LocalCache的相关参数,并创建LocalCache实例

  • CacheLoader:有用的部分就是一个load(),用于实现"取缓存-->若不存在,先计算,在缓存-->取缓存"的原子操作

  • LocalCache:整个guava cache的核心类,包含了guava cache的数据结构以及基本的缓存的操作方法

  • LocalLoadingCache:LocalCache的一个静态内部类,这里的get(K key)是外部调用get(K key)入口

  • LoadingCache接口:继承于Cache接口,定义了get(K key)

  • Cache接口:定义了getIfPresent(Object key)和put(K key, V value)

  • LocalManualCache:LocalCache的一个静态内部类,是LocalLoadingCache的父类,这里的getIfPresent(Object key)和put(K key, V value)也是外部方法的入口

关于上边的这些说明,结合之后的源码进行看就好了。

注:如果在源码中有一些注释与最后的套例子的注释不同的话,以后者为准

3.1、构建CacheBuilder+为LocalCache设置相关参数+创建LocalCache实例

CacheBuilder的一些属性:

    private static final int DEFAULT_INITIAL_CAPACITY = 16;//用于计算每个Segment中的hashtable的大小
    private static final int DEFAULT_CONCURRENCY_LEVEL = 4;//用于计算有几个Segment
    private static final int DEFAULT_EXPIRATION_NANOS = 0;//默认的缓存过期时间
    
    static final int UNSET_INT = -1;
    
    int initialCapacity = UNSET_INT;//用于计算每个Segment中的hashtable的大小
    int concurrencyLevel = UNSET_INT;//用于计算有几个Segment
    long maximumSize = UNSET_INT;//cache中最多能存放的缓存entry个数
    long maximumWeight = UNSET_INT;
    
    Strength keyStrength;//键的引用类型(strong、weak、soft)
    Strength valueStrength;//值的引用类型(strong、weak、soft)     long expireAfterWriteNanos = UNSET_INT;//缓存超时时间(起点:缓存被创建或被修改)
    long expireAfterAccessNanos = UNSET_INT;//缓存超时时间(起点:缓存被创建或被修改或被访问)

CacheBuilder-->newCacheBuilder():创建一个CacheBuilder实例

    /**
     * 采用默认的设置(如下)创造一个新的CacheBuilder实例
     * 1、strong keys
     * 2、strong values
     * 3、no automatic eviction of any kind.
     */
    public static CacheBuilder<Object, Object> newBuilder() {
        return new CacheBuilder<Object, Object>();//new 一个实例
    }

接下来,使用构建器模式指定一些属性值(这里的话,就是超时时间:expireAfterWriteNanos+cache中最多能放置的entry个数:maximumSize),这里的entry指的就是一个缓存(key-value对)

CacheBuilder-->expireAfterWrite(long duration, TimeUnit unit)

    /**
     * 指明每一个entry(key-value)在缓存中的过期时间
     * 1、时间的参考起点:entry的创建或值的修改
     * 2、过期的entry也许会被计入缓存个数size(也就是说缓存个数不仅仅只有存活的entry)
     * 3、但是过期的entry永远不会被读写
     */
    public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) {
        /*
         * 检查之前是否已经设置过缓存超时时间
         */
        checkState(expireAfterWriteNanos == UNSET_INT,//正确条件:之前没有设置过缓存超时时间
                   "expireAfterWrite was already set to %s ns",//不符合正确条件的错误信息
                   expireAfterWriteNanos);
        /*
         * 检查设置的超时时间是否大于等于0,当然,通常情况下,我们不会设置缓存为0
         */
        checkArgument(duration >= 0, //正确条件
                      "duration cannot be negative: %s %s",//不符合正确条件的错误信息,下边的是错误信息中的错误参数
                      duration, 
                      unit);
        this.expireAfterWriteNanos = unit.toNanos(duration);//根据输入的时间值与时间单位,将时间值转换为纳秒
        return this;
    }

注意:

  • 设置超时时间,注意时间的起点是entry的创建或替换(修改)

  • expireAfterAccess(long duration, TimeUnit unit)方法的时间起点:entry的创建或替换(修改)或被访问

免费领取验证码、内容安全、短信发送、直播点播体验包及云服务器等套餐

更多网易技术、产品、运营经验分享请点击

相关文章:
【推荐】 Docker容器的原理与实践 (下)
【推荐】 金融事业部QA培训体系
【推荐】 Question|网站被黑客扫描撞库该怎么应对防范?

Google guava cache源码解析1--构建缓存器(1)的更多相关文章

  1. 第二章 Google guava cache源码解析1--构建缓存器

    1.guava cache 当下最常用最简单的本地缓存 线程安全的本地缓存 类似于ConcurrentHashMap(或者说成就是一个ConcurrentHashMap,只是在其上多添加了一些功能) ...

  2. Google guava cache源码解析1--构建缓存器(3)

    此文已由作者赵计刚授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 下面介绍在LocalCache(CacheBuilder, CacheLoader)中调用的一些方法: Ca ...

  3. Google guava cache源码解析1--构建缓存器(2)

    此文已由作者赵计刚授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. CacheBuilder-->maximumSize(long size)     /**       ...

  4. Guava Cache源码解析

    概述: 本次主要是分析cache的源码,基本概念官方简介即可. 基本类图: 在官方的文档说明中,Guava Cache实现了三种加载缓存的方式: LoadingCache在构建缓存的时候,使用buil ...

  5. [源码解析] PyTorch分布式优化器(1)----基石篇

    [源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0 ...

  6. [源码解析] PyTorch分布式优化器(2)----数据并行优化器

    [源码解析] PyTorch分布式优化器(2)----数据并行优化器 目录 [源码解析] PyTorch分布式优化器(2)----数据并行优化器 0x00 摘要 0x01 前文回顾 0x02 DP 之 ...

  7. [源码解析] PyTorch分布式优化器(3)---- 模型并行

    [源码解析] PyTorch分布式优化器(3)---- 模型并行 目录 [源码解析] PyTorch分布式优化器(3)---- 模型并行 0x00 摘要 0x01 前文回顾 0x02 单机模型 2.1 ...

  8. Guava Cache源码详解

    目录 一.引子 二.使用方法 2.1 CacheBuilder有3种失效重载模式 2.2 测试验证 三.源码剖析 3.1 简介 3.2 源码剖析 四.总结 优点: 缺点: 正文 回到顶部 一.引子 缓 ...

  9. 常用限流算法与Guava RateLimiter源码解析

    在分布式系统中,应对高并发访问时,缓存.限流.降级是保护系统正常运行的常用方法.当请求量突发暴涨时,如果不加以限制访问,则可能导致整个系统崩溃,服务不可用.同时有一些业务场景,比如短信验证码,或者其它 ...

随机推荐

  1. note:debugging requires the debug connect session system privilege

    note:debugging requires the debug connect session system privilege 解决方案: 原因是用户权限不够,使用以下命令授予权限: GRANT ...

  2. javascript声明对象时 带var和不带var的区别

    2015/11/25补充: 关于变量声明这里有详细的解释: https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Stat ...

  3. keras框架的MLP手写数字识别MNIST,梳理?

    keras框架的MLP手写数字识别MNIST 代码: # coding: utf-8 # In[1]: import numpy as np import pandas as pd from kera ...

  4. kbmmw 与extjs 通过JSON Base64 显示图片

    delphi 官网上开始也来越多的介绍delphi与extjs 结合的例子,今天我就把官方的例子翻版一下. 官方使用C++builder 和webbroker 实现. 我使用kbmmw 来实现一下. ...

  5. Python开课复习-10/10

    1. 什么时匿名函数def 定义 的是有名函数:特点是可以通过名字重复调用 def func(): #func = 函数的内存地址 pass匿名函数就是没有名字的函数:特点是只能在定义时使用一次 2. ...

  6. Oracle 导出错误 EXP-00000~EXP-00107

    EXP-00000: Export terminated unsuccessfully Cause: Export encountered an Oracle error. Action: Look ...

  7. EXCEL中R1C1样式引用

    主要引用http://club.excelhome.net/thread-759847-1-1.html Sub chengji() ' ' 宏1 宏 ' Dim Finalrow As Intege ...

  8. UVa 10294 Arif in Dhaka (First Love Part 2) (Polya定理)

    题意:给定 n 和 m 表示要制作一个项链和手镯,项链和手镯的区别就是手镯旋转和翻转都是相同的,而项链旋转都是相同的,而翻转是不同的,问你使用 n 个珠子和 m 种颜色可以制作多少种项链和手镯. 析: ...

  9. mouseover和mouseout事件的相关元素

    在发生mouseover和mouseout事件时,还会涉及更多的元素,这两个事件都会涉及把鼠标指针从一个元素的边界之内移动到另一个元素的边界之内.对mouseover事件而言,事件的主目标获得光标元素 ...

  10. 【慕课网实战】Spark Streaming实时流处理项目实战笔记三之铭文升级版

    铭文一级: Flume概述Flume is a distributed, reliable, and available service for efficiently collecting(收集), ...