解题:SDOI 2011 消耗战
本身求答案是简单的树上DP,只需要求出根到每个点路径上的最小值,然后考虑割连父亲的边还是割所有儿子即可,但是每次都这样做一次显然不能通过,考虑优化
用虚树来优化:虚树是针对树上一些点建出来的一棵树,上面只有这些点和它们的LCA。显然这样虚树的大小不会超过2*所选点数,这样在缩小了问题规模的同时还保留了原树的性质。
具体的建法:
0.预处理DFS序
1.将所选点按DFS序从小到大排序
2.用栈维护一条从根延伸下来的链,依次将排序后的点nde加入。若栈为空则直接入栈,否则设栈顶为top:
3.求nde和top的lca,讨论:
①lca是top,将nde入栈,跑路
②lca不是top,设栈顶起第二个元素为sec。在lca的DFS序不大于sec时不断将sec与top相连并弹栈
(1)如果lca的DFS序小于top,将lca与top相连,弹栈
(2)如果lca仍然不是top,将lca入栈
(3)将nde入栈
(因为我们按DFS序排序,所以lca不可能是nde)
4.将所有点加入后,不断将sec与top相连并弹栈,直到栈里只有一个元素,这就是虚树的树根
之后就可以愉快地树形DP辣
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int T,n,m,t1,t2,t3,cnt,Cnt,tot,poi;
int P[N],Noww[N],Goal[N],p[N],noww[N],goal[N],val[N],cut[N];
int siz[N],far[N],dep[N],imp[N],top[N],dfn[N],pts[N],stk[N];
long long mini[N];
bool cmp(int a,int b)
{
return dfn[a]<dfn[b];
}
void Link(int f,int t,int v)
{
noww[++cnt]=p[f],p[f]=cnt;
goal[cnt]=t,val[cnt]=v;
noww[++cnt]=p[t],p[t]=cnt;
goal[cnt]=f,val[cnt]=v;
}
void Linka(int f,int t)
{
Noww[++Cnt]=P[f];
Goal[Cnt]=t,P[f]=Cnt;
}
void DFS(int nde,int fth,int dth)
{
int tmp=;
siz[nde]=,far[nde]=fth,dep[nde]=dth;
for(int i=p[nde];i;i=noww[i])
if(goal[i]!=fth)
{
mini[goal[i]]=min(mini[nde],1ll*val[i]);
DFS(goal[i],nde,dth+);
siz[nde]+=siz[goal[i]];
if(siz[goal[i]]>tmp)
tmp=siz[goal[i]],imp[nde]=goal[i];
}
}
void Mark(int nde,int tpp)
{
top[nde]=tpp,dfn[nde]=++tot;
if(imp[nde])
{
Mark(imp[nde],tpp);
for(int i=p[nde];i;i=noww[i])
if(goal[i]!=far[nde]&&goal[i]!=imp[nde])
Mark(goal[i],goal[i]);
}
}
int LCA(int x,int y)
{
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]])
swap(x,y); x=far[top[x]];
}
return dep[x]<dep[y]?x:y;
}
void Insert(int nde)
{
if(!poi) stk[++poi]=nde;
else
{
int lca=LCA(nde,stk[poi]);
if(lca!=stk[poi])
{
while(poi>&&dfn[lca]<=dfn[stk[poi-]])
Linka(stk[poi-],stk[poi]),poi--;
if(dfn[lca]<dfn[stk[poi]])
Linka(lca,stk[poi]),poi--;
if(lca!=stk[poi])
stk[++poi]=lca;
}
stk[++poi]=nde;
}
}
long long Getans(int nde)
{
long long tmp=;
for(int i=P[nde];i;i=Noww[i])
tmp+=Getans(Goal[i]); P[nde]=;
return cut[nde]?mini[nde]:min(mini[nde],tmp);
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d%d%d",&t1,&t2,&t3),Link(t1,t2,t3);
for(int i=;i<=n;i++) mini[i]=1e12;
DFS(,,),Mark(,);
scanf("%d",&T);
while(T--)
{
scanf("%d",&m),Cnt=poi=;
for(int i=;i<=m;i++) scanf("%d",&pts[i]);
sort(pts+,pts++m,cmp);
for(int i=;i<=m;i++) Insert(pts[i]),cut[pts[i]]=true;
while(poi>) Linka(stk[poi-],stk[poi]),poi--;
printf("%lld\n",Getans(stk[]));
for(int i=;i<=m;i++) cut[pts[i]]=false;
}
return ;
}
解题:SDOI 2011 消耗战的更多相关文章
- [bzoj2286][Sdoi 2011]消耗战
[bzoj2286]消耗战 标签: 虚树 DP 题目链接 题解 很容易找出\(O(mn)\)的做法. 只需要每次都dp一遍. 但是m和n是同阶的,所以这样肯定会T的. 注意到dp的时候有很多节点是不需 ...
- [SDOI 2011]消耗战
Description 题库链接 给你一棵 \(n\) 个节点根节点为 \(1\) 的有根树,有边权. \(m\) 次询问,每次给出 \(k_i\) 个关键点.询问切断一些边,使这些点到根节点不连通, ...
- 解题: SDOI 2011 染色
题面 强行把序列问题通过树剖套在树上...算了算是回顾了一下树剖的思想=.= 每次树上跳的时候注意跳的同时维护当前拼出来的左右两条链的靠上的端点,然后拼起来的时候讨论一下拼接点,最后一下左右两边的端点 ...
- 【codevs 1565】【SDOI 2011】计算器 快速幂+拓展欧几里得+BSGS算法
BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath ...
- [BZOJ 2243] [SDOI 2011] 染色 【树链剖分】
题目链接:BZOJ - 2243 题目分析 树链剖分...写了200+行...Debug了整整一天+... 静态读代码读了 5 遍 ,没发现错误,自己做小数据也过了. 提交之后全 WA . ————— ...
- BZOJ 2243 SDOI 2011染色
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2243 算法讨论: 树链剖分把树放到线段树上.然后线段树的每个节点要维护的东西有左端点的颜色 ...
- [SDOI 2011]黑白棋
Description 题库链接 给出一个 \(1\times n\) 的棋盘,棋盘上有 \(k\) 个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 \( ...
- [SDOI 2011]染色
Description 题库链接 给定一棵有 \(n\) 个节点的无根树和 \(m\) 个操作,操作有 \(2\) 类: 将节点 \(a\) 到节点 \(b\) 路径上所有点都染成颜色 \(c\) : ...
- [SDOI 2011]计算器
Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...
随机推荐
- 20155211 Exp4 恶意代码分析
20155211 Exp4 恶意代码分析 实践目标 1 监控你自己系统的运行状态,看有没有可疑的程序在运行. 2 是分析一个恶意软件,就分析Exp2或Exp3中生成后门软件:分析工具尽量使用原生指令或 ...
- 20155338课程设计个人报告——基于ARM实验箱的Android交友软件的设计与实现
课程设计个人报告--基于ARM实验箱的Android交友软件的设计与实现 个人贡献 实验环境的搭建 代码调试 在电脑上成功运行 研究程序代码撰写小组报告 一.实验环境 1.Eclipse软件开发环境: ...
- tkinter 弹出窗口 传值回到 主窗口
有些时候,我们需要使用弹出窗口,对程序的运行参数进行设置.有两种选择 一.标准窗口 如果只对一个参数进行设置(或者说从弹出窗口取回一个值),那么可以使用simpledialog,导入方法: from ...
- libgdx相关知识点
Gdx.graphics.setContinuousRendering(false); 设置图像为非连续自动渲染. 设置Opengl的混合模式,支持alpha属性 Gdx.gl.glBlendFunc ...
- chrome下的Grunt插件断点调试——基于node-inspector
之前调试grunt插件时,都是通过人肉打log来调试.不仅效率低,而且会产生一堆无用的代码.于是简单google了下node断点调试的方法,总结了下. 借助node-inspector,我们可以通过C ...
- Frida----安装
介绍 它是本机应用程序的 Greasemonkey,或者更多技术术语,它是一个动态代码检测工具包.它允许您将JavaScript或您自己的库的片段注入Windows,macOS,GNU / Linux ...
- Python+opencv 图像拼接
1.http://www.cnblogs.com/skyfsm/p/7411961.html ,给出了很好地拼接算法实现 2.由于不是Python的,所以简单做了一些翻译转成Python+opencv ...
- 290. Word Pattern【LeetCode by java】
今天发现LintCode页面刷新不出来了,所以就转战LeetCode.还是像以前一样,做题顺序:难度从低到高,每天至少一题. Given a pattern and a string str, fin ...
- 华为云Istio服务网格,让应用治理智能化、可视化
- PAT-1045. Favorite Color Stripe (30)-LIS
将Eva喜欢的颜色按顺序编个优先级, 2 3 1 5 6-> 1 2 3 4 5 然后读取stripe,将Eva不喜欢的先剔除掉,剩下的颜色替换为相应的优先级 2 2 4(去掉) 1 5 5 6 ...