Problem Description
You are the hero who saved your country. As promised, the king will give you some cities of the country, and you can choose which ones to own!
But don't get too excited. The cities you take should NOT be reachable from the capital -- the king does not want to accidentally enter your area. In order to satisfy this condition, you have to destroy some roads. What's worse, you have to pay for that -- each road is associated with some positive cost. That is, your final income is the total value of the cities you take, minus the total cost of destroyed roads.
Note that each road is a unidirectional, i.e only one direction is available. Some cities are reserved for the king, so you cannot take any of them even if they're unreachable from the capital. The capital city is always the city number 1.

Input
The first line contains a single integer T (T <= 20), the number of test cases. Each case begins with three integers n, m, f (1 <= f < n <= 1000, 1 <= m < 100000), the number of cities, number of roads, and number of cities that you can take. Cities are numbered 1 to n. Each of the following m lines contains three integers u, v, w, denoting a road from city u to city v, with cost w. Each of the following f lines contains two integers u and w, denoting an available city u, with value w.

Output
For each test case, print the case number and the best final income in the first line. In the second line, print e, the number of roads you should destroy, followed by e integers, the IDs of the destroyed roads. Roads are numbered 1 to m in the same order they appear in the input. If there are more than one solution, any one will do.

Sample Input
2
4 4 2
1 2 2
1 3 3
3 2 4
2 4 1
2 3
4 4
4 4 2
1 2 2
1 3 3
3 2 1
2 4 1
2 3
4 4

Sample Output
Case 1: 3
1 4
Case 2: 4
2 1 3

题意

N个城市M条边F个城市,M行每行u,v,w代表破坏u到v需要花费w元,F行u,w代表1不能到城市u获得w元,问你最大利润然后输出破坏的道路编号

题解

建立源点S=1,汇点T=n+1,uv连边流量w,uT连边流量w,跑最小割,得到最小花费,用总钱-最小花费就是利润

输出路径考虑S和T集合,DFS(1)跑出来的是S集合的点,其余都是T集合的点,枚举m条边,如果u输出S集合,v属于T集合,就说明是割边

代码

 #include<bits/stdc++.h>
using namespace std; const int maxn=;
const int maxm=2e5+;//至少总M*2
const int INF=0x3f3f3f3f; int TO[maxm],CAP[maxm],NEXT[maxm],tote;
int FIR[maxn],gap[maxn],cur[maxn],d[maxn],q[],vis[maxn],u[maxm],v[maxm];
int n,m,S,T; void add(int u,int v,int cap)
{
//printf("i=%d %d %d %d\n",tote,u,v,cap);
TO[tote]=v;
CAP[tote]=cap;
NEXT[tote]=FIR[u];
FIR[u]=tote++; TO[tote]=u;
CAP[tote]=;
NEXT[tote]=FIR[v];
FIR[v]=tote++;
}
void bfs()
{
memset(gap,,sizeof gap);
memset(d,,sizeof d);
++gap[d[T]=];
for(int i=;i<=n;++i)cur[i]=FIR[i];
int head=,tail=;
q[]=T;
while(head<=tail)
{
int u=q[head++];
for(int v=FIR[u];v!=-;v=NEXT[v])
if(!d[TO[v]])
++gap[d[TO[v]]=d[u]+],q[++tail]=TO[v];
}
}
int dfs(int u,int fl)
{
if(u==T)return fl;
int flow=;
for(int &v=cur[u];v!=-;v=NEXT[v])
if(CAP[v]&&d[u]==d[TO[v]]+)
{
int Min=dfs(TO[v],min(fl,CAP[v]));
flow+=Min,fl-=Min,CAP[v]-=Min,CAP[v^]+=Min;
if(!fl)return flow;
}
if(!(--gap[d[u]]))d[S]=n+;
++gap[++d[u]],cur[u]=FIR[u];
return flow;
}
int ISAP()
{
bfs();
int ret=;
while(d[S]<=n)ret+=dfs(S,INF);
return ret;
}
void init()
{
tote=;
memset(FIR,-,sizeof FIR);
}
void dfs(int u)
{
for(int i=FIR[u];i!=-;i=NEXT[i])
{
int v=TO[i];
if(CAP[i]!=&&!vis[v])
{
vis[v]=true;
dfs(v);
}
}
}
int main()
{
int t,f,o=;
scanf("%d",&t);
while(t--)
{
init();
scanf("%d%d%d",&n,&m,&f);
for(int i=,w;i<m;i++)
{
scanf("%d%d%d",&u[i],&v[i],&w);
add(u[i],v[i],w);
}
S=,T=n+,n+=;
add(S,,INF);
int sum=;
for(int i=,uu,w;i<f;i++)
{
scanf("%d%d",&uu,&w);
add(uu,T,w);
sum+=w;
}
printf("Case %d: %d\n",o++,sum-ISAP()); memset(vis,,sizeof vis);
dfs();
vector<int>ans;
for(int i=;i<m;i++)
if(vis[u[i]]&&!vis[v[i]])
ans.push_back(i+);
printf("%d",(int)ans.size());
for(int i=;i<ans.size();i++)
printf(" %d",ans[i]);
printf("\n");
}
return ;
}

HDU 3251 Being a Hero(最小割+输出割边)的更多相关文章

  1. HDU 4289:Control(最小割)

    http://acm.hdu.edu.cn/showproblem.php?pid=4289 题意:有n个城市,m条无向边,小偷要从s点开始逃到d点,在每个城市安放监控的花费是sa[i],问最小花费可 ...

  2. HDU 3452 Bonsai(网络流之最小割)

    题目地址:HDU 3452 最小割水题. 源点为根节点.再另设一汇点,汇点与叶子连边. 对叶子结点的推断是看度数是否为1. 代码例如以下: #include <iostream> #inc ...

  3. HDU 5889 Barricade 【BFS+最小割 网络流】(2016 ACM/ICPC Asia Regional Qingdao Online)

    Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  4. HDU 3526 Computer Assembling(最小割)

    http://acm.hdu.edu.cn/showproblem.php?pid=3526 题意:有个屌丝要配置电脑,现在有n个配件需要购买,有两家公司出售这n个配件,还有m个条件是如果配件x和配件 ...

  5. HDU 3691 Nubulsa Expo(全局最小割)

    Problem DescriptionYou may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa i ...

  6. HDU 6126.Give out candies 最小割

    Give out candies Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Other ...

  7. HDU 6214 Smallest Minimum Cut 最小割,权值编码

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214 题意:求边数最小的割. 解法: 建边的时候每条边权 w = w * (E + 1) + 1; 这 ...

  8. UVA10480:Sabotage(最小割+输出)

    Sabotage 题目链接:https://vjudge.net/problem/UVA-10480 Description: The regime of a small but wealthy di ...

  9. 洛谷 P4174 [NOI2006]最大获利 && 洛谷 P2762 太空飞行计划问题 (最大权闭合子图 && 最小割输出任意一组方案)

    https://www.luogu.org/problemnew/show/P4174 最大权闭合子图的模板 每个通讯站建一个点,点权为-Pi:每个用户建一个点,点权为Ci,分别向Ai和Bi对应的点连 ...

随机推荐

  1. 机器学习进阶-直方图与傅里叶变换-傅里叶变换(高低通滤波) 1.cv2.dft(进行傅里叶变化) 2.np.fft.fftshift(将低频移动到图像的中心) 3.cv2.magnitude(计算矩阵的加和平方根) 4.np.fft.ifftshift(将低频和高频移动到原来位置) 5.cv2.idft(傅里叶逆变换)

    1. cv2.dft(img, cv2.DFT_COMPLEX_OUTPUT) 进行傅里叶变化 参数说明: img表示输入的图片, cv2.DFT_COMPLEX_OUTPUT表示进行傅里叶变化的方法 ...

  2. pycharm 直接删掉数据表之后,makemigration和migrate 之后,数据库中依然没有生成数据表的问题

    综合分析一下行程这个问题的原因: 在终端中运行 select * from django_migrations; 查看 提交的记录,如果你的表删掉了,记录还在,那么数据库会觉得,这个表依然是存在的,所 ...

  3. etcd集群故障处理(转)

    1. etcd安装 rpm -ivh etcd-3.2.15-1.el7.x86_64.rpm systemctl daemon-reload systemctl enable etcd system ...

  4. Linux 中的定时处理 cron服务

    cron服务 在LINUX中,周期执行的任务一般由cron这个守护进程来处理 当安装完操作系统后默认会安装此服务工具并且会自动启动crond,该进程会每分钟定期检查是否有要执行的任务,若有则执行. c ...

  5. python模块os

    一.os模块概述 Python os模块包含普遍的操作系统功能.如果你希望你的程序能够与平台无关的话,这个模块是尤为重要的.(一语中的) 二.常用方法 1.os.name 输出字符串指示正在使用的平台 ...

  6. 钩子函数mounted:

    1.钩子函数 钩子函数是Windows消息处理机制的一部分,通过设置“钩子”,应用程序可以在系统级对所有消息.事件进行过滤,访问在正常情况下无法访问的消息.钩子的本质是一段用以处理系统消息的程序,通过 ...

  7. Spring格式化注解

    Spring Framework 3.0发布了.这里我们介绍其中的一个:用于格式化的注解.简介 Spring 3 提供了两个可以用于格式化数字.日期和时间的注解@NumberFormat和@DateT ...

  8. 19.struts-配置详解.md

    目录 1.package name extends abstract namespace 2.action name class method 3.result name type 标签体 <p ...

  9. HTML+CSS基础课程三

    1.文字排版--字体 我们可以使用css样式为网页中的文字设置字体.字号.颜色等样式属性.下面我们来看一个例子,下面代码实现:为网页中的文字设置字体为宋体. body{font-family:&quo ...

  10. iOS Dev (25) 解决“The executable was signed with invalid entitlements.”问题

    2014-01-10 10:34 5240人阅读 评论(1) 收藏 举报   目录(?)[+]   iOS Dev (25) 解决“The executable was signed with inv ...