es简单介绍及使用注意事项
是什么?
Elasticsearch是一个基于Apache Lucene(TM)的开源搜索引擎。无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进、性能最好的、功能最全的搜索引擎库。
Elasticsearch不仅仅是Lucene和全文搜索,我们还能这样去描述它:
- 分布式的实时文件存储,每个字段都被索引并可被搜索
- 分布式的实时分析搜索引擎
- 可以扩展到上百台服务器,处理PB级结构化或非结构化数据
面向文档
应用中的对象很少只是简单的键值列表,更多时候它拥有复杂的数据结构,比如包含日期、地理位置、另一个对象或者数组。
总有一天你会想到把这些对象存储到数据库中。将这些数据保存到由行和列组成的关系数据库中,就好像是把一个丰富,信息表现力强的对象拆散了放入一个非常大的表格中:你不得不拆散对象以适应表模式(通常一列表示一个字段),然后又不得不在查询的时候重建它们。
Elasticsearch是面向文档(document oriented)的,这意味着它可以存储整个对象或文档(document)。然而它不仅仅是存储,还会索引(index)每个文档的内容使之可以被搜索。在Elasticsearch中,你可以对文档(而非成行成列的数据)进行索引、搜索、排序、过滤。这种理解数据的方式与以往完全不同,这也是Elasticsearch能够执行复杂的全文搜索的原因之一。
使用案例:
- 维基百科使用Elasticsearch来进行全文搜做并高亮显示关键词,以及提供search-as-you-type、did-you-mean等搜索建议功能。
- 英国卫报使用Elasticsearch来处理访客日志,以便能将公众对不同文章的反应实时地反馈给各位编辑。
- StackOverflow将全文搜索与地理位置和相关信息进行结合,以提供more-like-this相关问题的展现。
- GitHub使用Elasticsearch来检索超过1300亿行代码。
- 每天,Goldman Sachs使用它来处理5TB数据的索引,还有很多投行使用它来分析股票市场的变动。
但是Elasticsearch并不只是面向大型企业的,它还帮助了很多类似DataDog以及Klout的创业公司进行了功能的扩展。
Elasticsearch 与 Solr 的比较总结
- 二者安装都很简单;
- Solr 利用 Zookeeper 进行分布式管理,而 Elasticsearch 自身带有分布式协调管理功能;
- Solr 支持更多格式的数据,而 Elasticsearch 仅支持json文件格式;
- Solr 官方提供的功能更多,而 Elasticsearch 本身更注重于核心功能,高级功能多有第三方插件提供;
- Solr 在传统的搜索应用中表现好于 Elasticsearch,但在处理实时搜索应用时效率明显低于 Elasticsearch。
Solr 是传统搜索应用的有力解决方案,但 Elasticsearch 更适用于新兴的实时搜索应用。
index、type
在Elasticsearch中,文档归属于一种类型(type),而这些类型存在于索引(index)中,我们可以画一些简单的对比图来类比传统关系型数据库:
Relational DB -> Databases -> Tables -> Rows -> Columns
Elasticsearch -> Indices -> Types -> Documents -> Fields
Elasticsearch集群可以包含多个索引(indices)(数据库),每一个索引可以包含多个类型(types)(表),每一个类型包含多个文档(documents)(行),然后每个文档包含多个字段(Fields)(列)。
什么是mapping
ES的mapping非常类似于静态语言中的数据类型:声明一个变量为int类型的变量, 以后这个变量都只能存储int类型的数据。同样的, 一个number类型的mapping字段只能存储number类型的数据。
同语言的数据类型相比,mapping还有一些其他的含义,mapping不仅告诉ES一个field中是什么类型的值, 它还告诉ES如何索引数据以及数据是否能被搜索到。
当你的查询没有返回相应的数据, 你的mapping很有可能有问题。当你拿不准的时候, 直接检查你的mapping。
剖析mapping
一个mapping由一个或多个analyzer组成, 一个analyzer又由一个或多个filter组成的。当ES索引文档的时候,它把字段中的内容传递给相应的analyzer,analyzer再传递给各自的filters。
filter的功能很容易理解:一个filter就是一个转换数据的方法, 输入一个字符串,这个方法返回另一个字符串,比如一个将字符串转为小写的方法就是一个filter很好的例子。
一个analyzer由一组顺序排列的filter组成,执行分析的过程就是按顺序一个filter一个filter依次调用, ES存储和索引最后得到的结果。
总结来说, mapping的作用就是执行一系列的指令将输入的数据转成可搜索的索引项。
默认analyzer
回到我们的例子, ES猜测description字段是string类型,于是默认创建一个string类型的mapping,它使用默认的全局analyzer, 默认的analyzer是标准analyzer。
我们可以在做查询的时候键入_analyze关键字查看分析的过程。使用以下指令查看description字段的转换过程:
可以看到, 我们的description字段的值转换成了[pretty], [cool], [guy], 在转换过程中大写的A, 标点符号都被filter过滤掉了, Pretty也转成了全小写的pretty,
这里比较重要的是, 即使ES存储数据的时候仍然存储的是完整的数据, 但是可以搜索到这条数据的关键字只剩下这三个单词了, 其他的都是抛弃掉了。
现在就能得到正确的结果,这是一个公认的简单例子, 但是它描述了ES是如何工作的, 不要把mapping想成是数据类型, 把它想象成是搜索数据的指令集合。如果你不想字符"a"被删除, 你需要修改你的analyzer。
mapping配置
可以修改的项:
- 增加新的类型定义
- 增加新的字段
- 增加新的分析器
不允许修改的项:
- 更改字段类型(比如文本改为数字)
- 更改存储为不存储,反之亦然
- 更改索引属性的值
- 更改已索引文档的分析器
注意的是新增字段或更改分析器之后,需要再次对所有文档进行索引重建
字段的数据类型
简单类型
- string(指定分词器)
- date(默认使用UTC保持,也可以使用format指定格式)
- 数值类型(byte,short,integer,long,float,double)
- boolean
- binary(存储在索引中的二进制数据的base64表示,比如图像,只存储不索引)
- ip(以数字形式简化IPV4地址的使用,可以被索引、排序并使用IP值做范围查询).
有层级结构的类型
比如object 或者 nested.
特殊类型
比如geo_point, geo_shape, or completion.
动态模板:
使用dynamic_templates可以完全控制新字段的映射,你设置可以通过字段名或数据类型应用一个完全不同的映射。
例子:我们为/my_index/my_type 分别创建
es:字段名以_es结尾的且是string类型的,需要使用spanish分词器
enn:其他字段的且是string类型的,需要使用english分词器
PUT /my_index
{ "mappings": { "my_type": { "dynamic_templates": [ { "es": { =>模板名称,随意,一般要有语义"match": "*_es", =>匹配字段名称"match_mapping_type": "string"=>匹配字段类型"mapping": { =>当匹配到之后,该字段的具体设置"type": "string", "anaylzer": "spanish" } } }, { "en": { =>模板名称,随意,一般要有语义"match": "*", =>匹配字段名称(任意,通用的顺序要在之后)"match_mapping_type": "string"=>匹配字段类型"mapping": { =>当匹配到之后,该字段的具体设置"type": "string", "anaylzer": "english" } } } ] } } }
index别名设置
一个别名能够指向多个索引,因此当我们将别名指向新的索引时,我们还需要删除别名原来到旧索引的指向。这个改变需要是原子的,即意味着我们需要使用_aliases端点:
POST /_aliases { "actions": [ { "remove": { "index": "my_index_v1", "alias": "my_index" }}, { "add": { "index": "my_index_v2", "alias": "my_index" }} ] }
现在你的应用就在零停机时间的前提下,实现了旧索引到新索引的透明切换。
问题:
1、全文索引(json全文爬数据)
2、聚合无法根据匹配度排序
3、聚合无法真分页
一个mapping示例
{
"dynamic": "false",
"dynamic_templates": [
{
"indexes": {
"mapping": {
"type": "string",
"fields": {
"raw": {
"index": "not_analyzed",
"null_value": "",
"type": "string"
}
}
},
"match_mapping_type": "string",
"path_match": "indexes.*"
}
}
],
"properties": {
"indexes": {
"dynamic": "strict",
"properties": {
"application": {
"type": "string",
"index": "not_analyzed"
},
"attribute_name": {
"type": "string",
"fields": {
"raw": {
"type": "string",
"index": "not_analyzed",
"null_value": ""
}
}
},
"category": {
"type": "string",
"index": "not_analyzed"
},
"create_time": {
"type": "long"
},
"data_md5": {
"type": "string",
"index": "not_analyzed"
},
"disable": {
"type": "boolean"
},
"keyword": {
"type": "string",
"fields": {
"raw": {
"type": "string",
"index": "not_analyzed",
"null_value": ""
}
}
},
"project_code": {
"type": "string",
"fields": {
"raw": {
"type": "string",
"index": "not_analyzed",
"null_value": ""
}
}
},
"project_id": {
"type": "string",
"index": "not_analyzed"
},
"project_title": {
"type": "string",
"fields": {
"raw": {
"type": "string",
"index": "not_analyzed",
"null_value": ""
}
}
},
"project_type": {
"type": "string",
"index": "not_analyzed",
"fields": {
"raw": {
"type": "string",
"index": "not_analyzed",
"null_value": ""
}
}
},
"reference_count": {
"type": "long"
},
"tenant": {
"type": "long"
},
"top_reference_count": {
"type": "long"
},
"type": {
"type": "long"
},
"update_time": {
"type": "long"
},
"user_id": {
"type": "long"
},
"user_name": {
"type": "string",
"fields": {
"raw": {
"type": "string",
"index": "not_analyzed",
"null_value": ""
}
}
}
}
},
"tenant": {
"type": "long"
}
}
}
ElasticSearch 基本查询语法
基本搜索
{
"query": {
"bool": {
"must": [
{
"match_all": {}
}
]
}
},
"from": 0,
"size": 1
}
Group BY
{
"query": {
"bool": {
"must": [
{
"match_all": {}
}
]
}
},
"from": 0,
"size": 0,
"aggregations": {
"mid": {
"aggregations": {
"terminal": {
"terms": {
"field": "terminal",
"size": 0
}
}
},
"terms": {
"field": "mid",
"size": "1"
}
}
}
}
Distinct Count
{
"query": {
"bool": {
"must": [
{
"match_all": {}
}
]
}
},
"from": 0,
"size": 0,
"aggregations": {
"COUNT(distinct (mid))": {
"cardinality": {
"field": "(mid)"
}
}
}
}
全文搜索
{
"query" : {
"query_string" : {"query" : "name:rcx"}
}
}
match查询
{
"query": {
"match": {
"title": "crime and punishment"
}
}
}
通配符查询
{
"query": {
"wildcard": {
"title": "cr?me"
}
}
}
范围查询
{
"query": {
"range": {
"year": {
"gte" :1890,
"lte":1900
}
}
}
}
正则表达式查询
{
"query": {
"regexp": {
"title": {
"value" :"cr.m[ae]",
"boost":10.0
}
}
}
}
布尔查询
{
"query": {
"bool": {
"must": {
"term": {
"title": "crime"
}
},
"should": {
"range": {
"year": {
"from": 1900,
"to": 2000
}
}
},
"must_not": {
"term": {
"otitle": "nothing"
}
}
}
}
}
es简单介绍及使用注意事项的更多相关文章
- 在linux上安装elasticsearch简称ES 简单介绍安装步骤
1.简介 Elasticsearch 是一个分布式可扩展的实时搜索和分析引擎,一个建立在全文搜索引擎 Apache Lucene(TM) 基础上的搜索引擎.当然 Elasticsearch 并不仅仅是 ...
- 1-ES简单介绍
一.ES简单介绍 ES:Elastic Search,一个分布式.高扩展.高实时的搜索与数据分析引警.它可以准实时地快速存储.搜索.分析海量的数据. 1.ES实现原理 a.用户数据提交到ES数据库中 ...
- iOS-iOS开发简单介绍
概览 终于到了真正接触IOS应用程序的时刻了,之前我们花了很多时间去讨论C语言.ObjC等知识,对于很多朋友而言开发IOS第一天就想直接看到成果,看到可以运行的IOS程序.但是这里我想强调一下,前面的 ...
- 使用Kotlin开发Android应用(I):简单介绍
使用Kotlin开发Android应用(I):简单介绍 @author ASCE1885的 Github 简书 微博 CSDN 原文链接 Kotlin是一门基于JVM的编程语言.它正成长为Androi ...
- Android发展简单介绍
Android一词的本义指“机器人”,同一时候也是Google于2007年11月5日宣布的基于Linux平台的开源手机操作系统的名称,该平台由操作系统.中间件.用户界面和应用软件组成,号称是首个为移动 ...
- WPF自学入门(六)WPF带标题的内容控件简单介绍
在WPF自学入门(二)WPF-XAML布局控件的文章中分别介绍StackPanel,WarpPanel,DockPanel,Grid,Canvas五种布局容器的使用,可以让我们大致了解容器可以使用在什 ...
- iOS边练边学--UIScrollView的属性简单使用,代理的简单介绍以及内容缩放
一.什么是UIScrollView *移动设备的屏幕大小是极其有限的,因此直接展示在用户眼前的内容也是相当有限 *当展示的内容较多,超出一个屏幕时,用户可通过滚动收拾来查看屏幕以外的内容 *普通的UI ...
- Web Services简单介绍
Web Services简单介绍 Web Services入门 一.Web Services简介 1.什么是Web Services? Web Services 是应用程序组件 Web Service ...
- iOS开发简单介绍
概览 终于到了真正接触IOS应用程序的时刻了,之前我们花了很多时间去讨论C语言.ObjC等知识,对于很多朋友而言开发IOS第一天就想直接看到成果,看到可以运行的iOS程序.但是这里我想强调一下,前面的 ...
随机推荐
- (不用循环也可以记录数组里的数)Color the ball --hdu--1556
题目: N个气球排成一排,从左到右依次编号为1,2,3....N.每次给定2个整数a b(a <= b),lele便为骑上他的“小飞鸽"牌电动车从气球a开始到气球b依次给每个气球涂一次 ...
- 我看Windows 8.1
在大家惊叹于Windows 8的大胆创新之时,Windows 8.1却已然来到.在公布了Preview之后,笔者便迫不及待地进行了安装,并在这里简单的说说最直观的感受. 提到Windows 8,不得不 ...
- python 开发学习
https://www.cnblogs.com/wj-1314/p/8476197.html
- JMS学习以及jms的实现activeMq
1.JMS规范介绍: http://www.cnblogs.com/hapjin/p/5431706.html http://elim.iteye.com/blog/1893038 http://bl ...
- spring mvc 的请求流程
SpringMVC核心处理流程: 1.DispatcherServlet前端控制器接收发过来的请求,交给HandlerMapping处理器映射器 2.HandlerMapping处理器映射器,根据请求 ...
- PSP个人项目耗时对比记录表:四则运算
Personal Software Process Stages Time(%) 计划 5 •估计这个任务需要多长时间 5 开发 60 •需求分析 5 •生成设计文档 5 ...
- 安装使用Entity Framework Power Tool Bate4 (Code First)从已建好的数据自动生成项目中的对应Model(新手贴,望各位大侠给予指点)
从开始学习使用MVC以后,同时也开始接触EF,很多原理都不是太懂,只知道安装了EF以后,点击哪里可以生成数据库对应的Model,不用再自己手写Model.这里记录的就是如何从已建立好的数据库生成项目代 ...
- 初识Identity并添加身份验证管理页面
目录 初识Identity并添加身份验证管理页面 前言 什么是ASP.NET Core Identity 创建带有身份验证的WebApp 尝试运行 检查解决方案中的项目文件 发现问题 原因 解决问题 ...
- JAVA学习笔记1——环境配置
·JDK 发展史 1995 java语言诞生 1996 JDK1.0发布 1997 JDK1.1发布 1998 JDK1.2发布(Java2),JFC/Swing技术发布 1999 Java被分成了J ...
- SpringBoot2 web
验证框架 SpringBoot支持JSR-303,Bean等验证框架 JSR-303 JSR-303是Java的标准验证框架,已有实现Hibernate validator. JSR-303验证类型 ...