目录:

  1. multiprocessing模块
  2. Pool类
  3. apply
  4. apply_async
  5. map
  6. close
  7. terminate
  8. join
  9. 进程实例

multiprocessing模块

如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择。由于Windows没有fork调用,难道在Windows上无法用Python编写多进程的程序?由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。multiprocessing模块就是跨平台版本的多进程模块。multiprocessing模块提供了一个Process类来代表一个进程对象,这个模块表示像线程一样管理进程,这个是multiprocessing的核心,它与threading很相似,对多核CPU的利用率会比threading好的多。

看一下Process类的构造方法:

__init__(self, group=None, target=None, name=None, args=(), kwargs={})

参数说明: 
group:进程所属组。基本不用 
target:表示调用对象。 
args:表示调用对象的位置参数元组。 
name:别名 
kwargs:表示调用对象的字典。

下面看一个简单的例子

 #coding=utf-8
import multiprocessing def do(n) :
#获取当前线程的名字
name = multiprocessing.current_process().name
print(name,'starting')
print("worker ", n)
return if __name__ == '__main__' :
numList = []
for i in xrange(5) :
p = multiprocessing.Process(target=do, args=(i,))
numList.append(p)
p.start()
p.join()
print("Process end.")

运行结果

Process-1 starting
worker 0
Process end.
Process-2 starting
worker 1
Process end.
Process-3 starting
worker 2
Process end.
Process-4 starting
worker 3
Process end.
Process-5 starting
worker 4
Process end.

创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,并用其start()方法启动,这样创建进程比fork()还要简单。 join()方法表示等待子进程结束以后再继续往下运行,通常用于进程间的同步。

注意: 
在Windows上要想使用进程模块,就必须把有关进程的代码写在当前.py文件的if __name__ == ‘__main__’ :语句的下面,才能正常使用Windows下的进程模块。Unix/Linux下则不需要。

Pool类

Pool类可以提供指定数量的进程供用户调用,当有新的请求提交到Pool中时,如果池还没有满,就会创建一个新的进程来执行请求。如果池满,请求就会告知先等待,直到池中有进程结束,才会创建新的进程来执行这些请求。 
下面介绍一下multiprocessing 模块下的Pool类下的几个方法:

1.apply()

函数原型:apply(func[, args=()[, kwds={}]])

该函数用于传递不定参数,同python中的apply函数一致,主进程会被阻塞直到函数执行结束(不建议使用,并且3.x以后不在出现)。

2.apply_async

函数原型:apply_async(func[, args=()[, kwds={}[, callback=None]]])

与apply用法一致,但它是非阻塞的且支持结果返回后进行回调。

3.map()

函数原型:map(func, iterable[, chunksize=None])

Pool类中的map方法,与内置的map函数用法行为基本一致,它会使进程阻塞直到结果返回。 
注意:虽然第二个参数是一个迭代器,但在实际使用中,必须在整个队列都就绪后,程序才会运行子进程。

4.map_async()

函数原型:map_async(func, iterable[, chunksize[, callback]])
与map用法一致,但是它是非阻塞的。其有关事项见apply_async。

5.close()

关闭进程池(pool),使其不在接受新的任务。

6.terminal()

结束工作进程,不在处理未处理的任务。

7.join()

主进程阻塞等待子进程的退出, join方法要在close或terminate之后使用。

下面我们看一个简单的multiprocessing.Pool类的实例:

 # -*- coding: utf-8 -*-
import time
from multiprocessing import Pool
def run(fn):
#fn: 函数参数是数据列表的一个元素
time.sleep(1)
print(fn*fn) if __name__ == "__main__":
testFL = [1,2,3,4,5,6]
print ('shunxu:') #顺序执行(也就是串行执行,单进程)
s = time.time()
for fn in testFL:
run(fn)
t1 = time.time()
print ("顺序执行时间:", int(t1 - s)) print ('concurrent:') #创建多个进程,并行执行
pool = Pool(10) #创建拥有10个进程数量的进程池
#testFL:要处理的数据列表,run:处理testFL列表中数据的函数
pool.map(run, testFL)
pool.close()#关闭进程池,不再接受新的进程
pool.join()#主进程阻塞等待子进程的退出
t2 = time.time()
print ("并行执行时间:", int(t2-t1))

输出结果为:

shunxu:
1
4
9
16
25
36
顺序执行时间: 6
concurrent:
1
4
9
16
25
36
并行执行时间: 1

上例是一个创建多个进程并发处理与顺序执行处理同一数据,所用时间的差别。从结果可以看出,并发执行的时间明显比顺序执行要快很多,但是进程是要耗资源的,所以平时工作中,进程数也不能开太大。 对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),让其不再接受新的Process了。

更多有关进程介绍请参考官方文档:https://docs.python.org/2/library/multiprocessing.html

本文参考:http://blog.csdn.net/seetheworld518/article/details/49639651#t0

下次我们运用多进程爬取赶集网数据。

Python多进程并发操作进程池Pool的更多相关文章

  1. [转]Python多进程并发操作中进程池Pool的应用

    Pool类 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间.如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十 ...

  2. Python多进程并发操作中进程池Pool的应用

    Pool类 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间.如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十 ...

  3. Python多进程库multiprocessing创建进程以及进程池Pool类的使用

    问题起因最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bag ...

  4. Python多进程库multiprocessing中进程池Pool类的使用[转]

    from:http://blog.csdn.net/jinping_shi/article/details/52433867 Python多进程库multiprocessing中进程池Pool类的使用 ...

  5. python学习笔记——multiprocessing 多进程组件 进程池Pool

    1 进程池Pool基本概述 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量时间,如果操作的对象数目不大时,还可以直接适用Process类动态生成 ...

  6. Python 之并发编程之manager与进程池pool

    一.manager 常用的数据类型:dict list 能够实现进程之间的数据共享 进程之间如果同时修改一个数据,会导致数据冲突,因为并发的特征,导致数据更新不同步. def work(dic, lo ...

  7. python 使用进程池Pool进行并发编程

    进程池Pool 当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到mu ...

  8. Python 多进程编程之 进程间的通信(在Pool中Queue)

    Python 多进程编程之 进程间的通信(在Pool中Queue) 1,在进程池中进程间的通信,原理与普通进程之间一样,只是引用的方法不同,python对进程池通信有专用的方法 在Manager()中 ...

  9. python 进程池pool简单使用

    平常会经常用到多进程,可以用进程池pool来进行自动控制进程,下面介绍一下pool的简单使用. 需要主动是,在Windows上要想使用进程模块,就必须把有关进程的代码写if __name__ == ‘ ...

随机推荐

  1. 数值的整数次方(python)

    题目描述 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方. # -*- coding:utf-8 -*- class Solution: ...

  2. 第十一章 串 (c2)KMP算法:查询表

  3. 第二章 向量(d5)有序向量:插值查找

  4. python爬虫相关基础概念

    什么是爬虫 爬虫就是通过编写程序模拟浏览器上网,然后让其去互联网上抓取数据的过程. 哪些语言可以实现爬虫 1.php:可以实现爬虫.但是php在实现爬虫中支持多线程和多进程方面做得不好. 2.java ...

  5. CSS3实现10种Loading效果(转)

    CSS3实现10种Loading效果  原文地址:http://www.cnblogs.com/jr1993/p/4622039.html 昨晚用CSS3实现了几种常见的Loading效果,虽然很简单 ...

  6. TZOJ 3710 修路问题(最小差值生成树kruskal或者LCT)

    描述 xxx国“山头乡”有n个村子,政府准备修建乡村公路,由于地形复杂,有些乡村之间可能无法修筑公路,因此政府经过仔细的考察,终于得到了所有可能的修路费用数据.并将其公布于众,广泛征求村民的修路意见. ...

  7. selenium验证码和错误截图

    验证码的识别: 1,破解验证码 OCR识别(一般使用tesseract-ocr) 人工智能(AI机器学习 TensorFlow,成本大) 2,绕过验证码 1, 让开发人员临时关闭验证码 2,提供万能验 ...

  8. postman接口测试实例

    牛刀小试项目 抽奖项目

  9. linux命令学习之:ifconfig

    ifconfig命令被用于配置和显示Linux内核中网络接口的网络参数.用ifconfig命令配置的网卡信息,在网卡重启后机器重启后,配置就不存在.要想将上述的配置信息永远的存的电脑里,那就要修改网卡 ...

  10. WebApi中Swagger的使用(超级简单)

    Swagger解释 Swagger是一种Rest API的简单但强大的表示方式,她是标准的与语言无关,这种表示方式不但人可读,而且机器可读. 可以作为Rest API的交互式文档,也可以作为Rest ...