这篇文章是对之前啊啊救救我,为何我的QQ图那么飘(全基因组关联分析)这篇文章的一个补坑。

LD SCore除了查看显著SNP位点对表型是否为基因多效性外,还额外补充了怎么计算表型的遗传度和遗传相关性。

1 下载、安装ldsc

git clone https://github.com/bulik/ldsc.git

cd ldsc

2 安装ldsc依赖的环境

conda env create --file environment.yml

source activate ldsc

3 测试是否安装成功

如果安装成功,输入./ldsc.py -h代码会出现如下图:
 

输入./munge_sumstats.py -h代码会出现如下图:
 

4 准备summary文件summary.txt

summary.txt为关联分析的summary数据,包含rs编号、染色体编号、位置、A1(效应等位基因)、A2(无效等位基因)、效应值(OR或BETA)、P值,如下图所示:

5 将summary文件转换为ldsc格式

munge_sumstats.py --sumstats summary.txt --N 17115 --out scz --merge-alleles w_hm3.snplist

这里的N指的是研究的样本数量;

scz是输出的文件名;

w_hm3.snplist是被纳入分析的SNP,包含三列:包含rs编号、位置、A1(效应等位基因)、A2(无效等位基因)# 这一步可有可无#

如果想把所有的SNP位点纳入分析,那么采用这个命令: munge_sumstats.py --sumstats summary.txt --N 17115 --out scz

这一步会生成scz.sumstats.gz的文件;

6 将基因型数据按染色体分开

for q in $(seq 1 22); do plink --bfile file --chr $q --make-bed --out chr$q done

这个步骤会生成22个plink格式文件(bed,bim,fam),每一个文件代表一条染色体。

7 计算LD

for q in $(seq 1 22); do ldsc.py --bfile chr$q --l2 --ld-wind-cm 5 --yes-really --out chr/$q done

生成的文件如下所示:

8 计算回归截距和遗传度(the LD Score regression intercept and heritability)

ldsc.py --h2 scz.sumstats.gz --ref-ld-chr chr/ --w-ld-chr chr/ --out scz_h2

scz.sumstats.gz为步骤5生成的文件

chr/ 为步骤7生成的LD文件路径

scz_h2为回归截距和遗传度的输出文件

9 查看回归截距(LD Score regression intercept )

less scz_h2.log

输出文件最底部:

Intercept: 1.0252 (0.0075)

截距为1.0252

关于回归截距怎么看,请看之前发过的推文:啊啊救救我,为何我的QQ图那么飘(全基因组关联分析)

10 查看遗传度(heritability)

less scz_h2.log

输出文件最底部:

Total Observed scale h2: 0.7153 (0.0386)

遗传度为0.7153

11 计算遗传相关性(genetic correlation)

ldsc.py --rg trait1.sumstats.gz,trait2.sumstats.gz --ref-ld-chr chr/ --w-ld-chr chr/ --out trait1_trait2

trait1.sumstats.gz为表型1的ldsc格式文件;

trait2.sumstats.gz为表型2的ldsc格式文件;

chr/ 为步骤7生成的LD文件路径

trait1_trait2为表型1和表型2的遗传相关性输出文件;

12 查看遗传相关性(genetic correlation)

less trait1_trait2.log

输出文件最底部:

Genetic Correlation: 0.6561 (0.0605)

表型1和表型2的遗传相关性为0.6561

LD SCore计算基因多效性、遗传度、遗传相关性(the LD Score regression intercept, heritability and genetic correlation)的更多相关文章

  1. 利用GCTA工具计算复杂性状/特征(Complex Trait)的遗传相关性(genetic correlation)

    如文章"Genome-wide Complex Trait Analysis(GCTA)-全基因组复杂性状分析"中介绍的GCTA,是一款基于全基因组关联分析发展的分析工具,除了计算 ...

  2. usr/bin/ld: cannot find 错误解决方法和 /etc/ld.so.conf

    我makefile出现这个错误: HelloWorldServer.c:(.text+0xaa): undefined reference to `zmq_send'collect2: error: ...

  3. GAN量化评估方法——IS(Inception Score)和FID(Frechet Inception Distance score)

    生成模型产生的是高维的复杂结构数据,它们不同于判别模型,很难用简单的指标来评估模型的好坏.下面介绍两种当前比较流行的评估生成模型的指标(仅判别图像):IS(Inception Score)和FID(F ...

  4. /usr/bin/ld.bfd.real: cannot find -lGL /usr/bin/ld.bfd.real: cannot find -lX11

    /usr/bin/ld.bfd.real: cannot find -lGL /usr/bin/ld.bfd.real: cannot find -lX11 根据网上大多数的说法,以及官网的介绍.截至 ...

  5. linux ERROR: ld.so: object '/lib/libcwait.so' from /etc/ld.so.preload cannot be preloaded: ignored.

    [root@ora9i 3238244]# lsb_release -a LSB Version:    :core-3.0-amd64:core-3.0-ia32:core-3.0-noarch:g ...

  6. Centos中Qt编译问题(/usr/bin/ld: 找不到 -lpulse-mainloop-glib,/usr/bin/ld: 找不到 -lpulse...)

    Linux下QT编写一个与视频播放的程序,出现/usr/bin/ld: 找不到 -lpulse-mainloop-glib,/usr/bin/ld: 找不到 -lpulse 解决办法: 首先find ...

  7. Elasticsearch 评分score计算中的Boost 和 queryNorm

    本来没有这篇文章,在公司分享ES的时候遇到一个问题,使用boost的时候,怎么从评分score中知道boost的影响. 虽然我们从查询结果可以直观看到,boost起了应有的作用,但是在explain的 ...

  8. 全基因组关联分析学习资料(GWAS tutorial)

    前言 很多人问我有没有关于全基因组关联分析(GWAS)原理的书籍或者文章推荐. 其实我个人觉得,做这个分析,先从跑流程开始,再去看原理. 为什么这么说呢,因为对于初学者来说,跑流程就像一个大黑洞,学习 ...

  9. GWAS分析基本流程及分析思路

    数据预处理(DNA genotyping.Quality control.Imputation) QC的工作可以做PLINK上完成Imputation的工作用IMPUTE2完成 2. 表型数据统计分析 ...

随机推荐

  1. Spring boot项目分环境Maven打包,动态配置文件,动态配置项目

    Spring boot Maven 项目打包 使用Maven 实现多环境 test dev prod 打包 项目的结构 在下图中可用看出,我们打包时各个环境需要分开,采用 application-环境 ...

  2. Pthon魔术方法(Magic Methods)-反射

    Pthon魔术方法(Magic Methods)-反射 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.反射概述 运行时,区别于编译时,指的时程序被加载到内存中执行的时候. 反射 ...

  3. c风格的字符串

    c风格的字符串的标注库 #include <cstring> 使用c 风格的字符串,牢记,其必须以null为结束标志 如 char ca[]={'c','+','='}; cout< ...

  4. 界面交互~Toast和模态对话框

    界面交互 名称 功能说明 wx.showToast 显示消息提示框 wx.showModal 显示模态对话框 wx.showLoading 显示 loading 提示框 wx.showActionSh ...

  5. 《BUG创造队》第三次作业:团队项目原型设计与开发

    项目 内容 这个作业属于哪个课程 2016级软件工程 这个作业的要求在哪里 实验六 团队作业3:团队项目原型设计与开发 团队名称 BUG创造队 作业学习目标 ①掌握软件原型开发技术:②学会使用软件原型 ...

  6. CPU 的三大架构 —— numa smp mpp

    SMP 模式 SMP模式将多个处理器与一个集中的存储器相连.在SMP模式下,所有处理器都可以访问同一个系统物理存储器,这就意味着SMP系统只运行操作系统的一个拷贝. 因此SMP系统有时也被称为一致存储 ...

  7. spark-scala开发的第一个程序WordCount

    package ***** import org.apache.spark.{SparkConf, SparkContext} object WordCount { def main(args: Ar ...

  8. HTML事件(onclick、onmouseover、onmouseout、this)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. 持续集成学习7 jenkins自动化代码构建

    一.整体功能 1.触发上下游构建 2.我们在触发一个job的时候顺便丢一些参数过去,这些参数有可能是我这次编译过程中产生的一些地址,版本号或动态的一些东西丢到下游作为下游的构建参数 3.不同种类的视图

  10. vlang module 使用

    vlang 支持module,概念以及使用类似rust 以及golang 的gopath(从当前的文档以及使用来说),但是还不完整 以及是够用,但是有问题 v module 试用 项目结构   ├── ...