大数据的4V特点:

  Volume(大量):数据巨大。
  Velocity(高速):数据产生快,每一天每一秒全球人产生的数据足够庞大且数据处理也逐渐变快。
  Variety(多样):数据格式多样化,如音频数据、文本数据等
  Value(价值):通过收集大量数据不相关数据探查并证明其两者之间的关联性,所产生的价值,如买啤酒的人通常会购买尿布的案例。

  数据分析流程

  一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。按照这个流程,每个部分需要掌握的细分知识点如下:

  我们可以通过以下的工具包,来实现整个数据分析的流程:numpy(科学计算/矩阵)、Pandas(数据处理/分析)、Matplotlib(数据图表)、seaborn(数据可视化)等。

  数据分析中80%的时间都是在数据清理部分,loading, clearning, transforming, rearranging。而pandas非常适合用来执行这些任务。

  

  数据分析的模块有哪些:

  1. numpy 高效处理数据,提供数组支持,很多模块都依赖它,比如pandas,scipy,matplotlib都依赖他,所以这个模块都是基础。所以必须先安装numpy。
  2. pandas 主要用于进行数据的采集与分析
  3. scipy 主要进行数值计算。同时支持矩阵运算,并提供了很多高等数据处理功能,比如积分,微分方程求样等。
  4. matplotlib 作图模块,结合其他数据分析模块,解决可视化问题
  5. statsmodels 这个模块主要用于统计分析
  6. Gensim 这个模块主要用于文本挖掘
  7. sklearn,keras 前者机器学习,后者深度学习。

  数据获取:公开数据、Python爬虫

  外部数据的获取方式主要有以下两种。

  第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。

  另一种获取外部数据的方式就是爬虫。

  比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。

  在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………

  以及,如何用 Python 库(urllib、BeautifulSoup、requests、scrapy)实现网页爬虫。

  掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、使用cookie信息、模拟用户登录、抓包分析、搭建代理池等等,来应对不同网站的反爬虫限制。

  数据存取:SQL语言

  在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据。

  SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:

  提取特定情况下的数据

  数据库的增、删、查、改

  数据的分组聚合、如何建立多个表之间的联系

  数据预处理:Python(pandas)

  很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。

  对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:

  选择:数据访问

  缺失值处理:对缺失数据行进行删除或填充

  重复值处理:重复值的判断与删除

  异常值处理:清除不必要的空格和极端、异常数据

  相关操作:描述性统计、Apply、直方图等

  合并:符合各种逻辑关系的合并操作

  分组:数据划分、分别执行函数、数据重组

  Reshaping:快速生成数据透视表

  概率论及统计学知识

  需要掌握的知识点如下:

  基本统计量:均值、中位数、众数、百分位数、极值等

  其他描述性统计量:偏度、方差、标准差、显着性等

  其他统计知识:总体和样本、参数和统计量、ErrorBar

  概率分布与假设检验:各种分布、假设检验流程

  其他概率论知识:条件概率、贝叶斯等

  有了统计学的基本知识,你就可以用这些统计量做基本的分析了。你可以使用 Seaborn、matplotlib 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。

  Python 数据分析

  掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:

  回归分析:线性回归、逻辑回归

  基本的分类算法:决策树、随机森林……

  基本的聚类算法:k-means……

  特征工程基础:如何用特征选择优化模型

  调参方法:如何调节参数优化模型

  Python 数据分析包:scipy、numpy、scikit-learn等

  在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。

  当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。

  然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去了解如何通过特征提取、参数调节来提升预测的精度。

  你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。

python大数据挖掘和分析的套路的更多相关文章

  1. 2 python大数据挖掘系列之淘宝商城数据预处理实战

    preface 在上一章节我们聊了python大数据分析的基本模块,下面就说说2个项目吧,第一个是进行淘宝商品数据的挖掘,第二个是进行文本相似度匹配.好了,废话不多说,赶紧上车. 淘宝商品数据挖掘 数 ...

  2. 1 python大数据挖掘系列之基础知识入门

    preface Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们. Python数据分析与挖掘技术概述 所谓数据分析,即对已知的数据进行分析 ...

  3. python大数据挖掘系列之基础知识入门

    preface Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们. Python数据分析与挖掘技术概述 所谓数据分析,即对已知的数据进行分析 ...

  4. python大数据挖掘系列之淘宝商城数据预处理实战

    数据清洗: 所谓的数据清洗,就是把一些异常的.缺失的数据处理掉,处理掉不一定是说删除,而是说通过某些方法将这个值补充上去,数据清洗目的在于为了让我们数据的可靠,因为脏数据会对数据分析产生影响.拿到数据 ...

  5. Hadoop大数据挖掘从入门到进阶实战

    1.概述 大数据时代,数据的存储与挖掘至关重要.企业在追求高可用性.高扩展性及高容错性的大数据处理平台的同时还希望能够降低成本,而Hadoop为实现这些需求提供了解决方案.面对Hadoop的普及和学习 ...

  6. 《零起点,python大数据与量化交易》

    <零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库 ...

  7. Python、R对比分析

    一.Python与R功能对比分析 1.python与R相比速度要快.python可以直接处理上G的数据:R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析, ...

  8. 顶尖大数据挖掘实战平台(TipDM-H8)产品白皮书

        顶尖大数据挖掘实战平台 (TipDM-H8)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http: ...

  9. 常用排序算法的python实现和性能分析

    常用排序算法的python实现和性能分析 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试 ...

随机推荐

  1. 自用 goodsdetail

    JSON.parse(data.parameter)  存的字符串 <select id="getGoodsBaseInfoById" resultType="co ...

  2. ssh:no matching host key type found. Their offer: ssh-dss

    最近突然ssh 服务连接出现 no matching host key type found. Their offer: ssh-dss 以前一直没有问题 可能的原因 openssh 服务升级,加密算 ...

  3. 洛谷 P2421 [NOI2002]荒岛野人

    题目描述 又是一道扩欧的题. 要求一个最小的m使得 Ci+Pi*x≡Cj+Pj*x mod m(i!=j) 在x在第i个人和第j个人的有生之年无解. 也就是 (Pi-Pj)*x+m*y=Cj-Ci 在 ...

  4. JDK 下载相关资料

    所有版本JDK下载地址: http://www.oracle.com/technetwork/java/archive-139210.html 下载账户密码: 2696671285@qq.com Or ...

  5. el-table里面的列需要对比两个返回参数

    需求是这样的--- 已发布时间超过30分钟,显示黄色,超过一个钟显示红色 现在后台返回的时间的格式是2018-10-22 11:23:23的格式 做法是: 第一步: 先将后台返回的格式转化为时间戳,然 ...

  6. Portainer实战

    Portainer是一个轻量级的Docker环境管理UI,可以管理docker host和docker swarm(我主要看中了能管理swarm这个,毕竟市面上能管理swarm的平台不多).之所以说是 ...

  7. GIT 使用记录,新手->会用(mac 用户)

    (唔,mac 用户这个要求是因为集成在 terminal 中可直接使用) 1. github 中 创建 git 账户 2. github -> 在个人设置中 找到 ssh  and GPGkey ...

  8. 分享一些好用的 Chrome 扩展

    阅读本文大概需要 2.8 分钟. 前言 使用浏览器扩展程序可以使你的工作效率提高数倍不止,那么下面我就向大家分享一下我日常使用的扩展,可能大多数扩展大家都已经在使用了,不过也难免有一两个是你不知道的. ...

  9. 【软工实践】Beta冲刺(1/5)

    链接部分 队名:女生都队 组长博客: 博客链接 作业博客:博客链接 小组内容 恩泽(组长) 过去两天完成了哪些任务 描述 登陆注册.查看用户信息.添加用户任务.查看任务等API的完善 tomcat的学 ...

  10. linux 命令 文件数量统计

    # 查看当前目录下的文件数量(不包含子目录中的文件) ls -l|grep "^-"| wc -l # 查看当前目录下的文件数量(包含子目录中的文件) 注意:R,代表子目录 ls ...