Celery

1.什么是Clelery

Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统

专注于实时处理的异步任务队列

同时也支持任务调度

Celery架构

Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。

消息中间件

Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等

任务执行单元

Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。

任务结果存储

Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等

版本支持情况

Celery version 4.0 runs on
Python ❨2.7, 3.4, 3.5❩
PyPy ❨5.4, 5.5❩
This is the last version to support Python 2.7, and from the next version (Celery 5.x) Python 3.5 or newer is required. If you’re running an older version of Python, you need to be running an older version of Celery: Python 2.6: Celery series 3.1 or earlier.
Python 2.5: Celery series 3.0 or earlier.
Python 2.4 was Celery series 2.2 or earlier. Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues related to that platform.

2.使用场景

异步任务:将耗时操作任务提交给Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等

定时任务:定时执行某件事情,比如每天数据统计

3.Celery的安装配置

pip install celery

消息中间件:RabbitMQ/Redis

app=Celery('任务名',backend='xxx',broker='xxx')

4.Celery执行异步任务

基本使用

创建项目celerytest

创建py文件:celery_app_task.py

import celery
import time
# broker='redis://127.0.0.1:6379/2' 不加密码
backend='redis://:123456@127.0.0.1:6379/1'
broker='redis://:123456@127.0.0.1:6379/2'
cel=celery.Celery('test',backend=backend,broker=broker)
@cel.task
def add(x,y):
return x+y

创建py文件:add_task.py,添加任务

from celery_app_task import add
result = add.delay(4,5)
print(result.id)

创建py文件:run.py,执行任务,或者使用命令执行:celery worker -A celery_app_task -l info

注:windows下:celery worker -A celery_app_task -l info -P eventlet

from celery_app_task import cel
if __name__ == '__main__':
cel.worker_main()
# cel.worker_main(argv=['--loglevel=info')

创建py文件:result.py,查看任务执行结果

from celery.result import AsyncResult
from celery_app_task import cel async = AsyncResult(id="e919d97d-2938-4d0f-9265-fd8237dc2aa3", app=cel) if async.successful():
result = async.get()
print(result)
# result.forget() # 将结果删除
elif async.failed():
print('执行失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')

执行 add_task.py,添加任务,并获取任务ID

执行 run.py ,或者执行命令:celery worker -A celery_app_task -l info

执行 result.py,检查任务状态并获取结果

多任务结构

pro_cel
├── celery_task# celery相关文件夹
│ ├── celery.py # celery连接和配置相关文件,必须叫这个名字
│ └── tasks1.py # 所有任务函数
│ └── tasks2.py # 所有任务函数
├── check_result.py # 检查结果
└── send_task.py # 触发任务

celery.py

from celery import Celery

cel = Celery('celery_demo',
broker='redis://127.0.0.1:6379/1',
backend='redis://127.0.0.1:6379/2',
# 包含以下两个任务文件,去相应的py文件中找任务,对多个任务做分类
include=['celery_task.tasks1',
'celery_task.tasks2'
]) # 时区
cel.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
cel.conf.enable_utc = False

tasks1.py

import time
from celery_task.celery import cel @cel.task
def test_celery(res):
time.sleep(5)
return "test_celery任务结果:%s"%res

tasks2.py

import time
from celery_task.celery import cel
@cel.task
def test_celery2(res):
time.sleep(5)
return "test_celery2任务结果:%s"%res

check_result.py

from celery.result import AsyncResult
from celery_task.celery import cel async = AsyncResult(id="08eb2778-24e1-44e4-a54b-56990b3519ef", app=cel) if async.successful():
result = async.get()
print(result)
# result.forget() # 将结果删除,执行完成,结果不会自动删除
# async.revoke(terminate=True) # 无论现在是什么时候,都要终止
# async.revoke(terminate=False) # 如果任务还没有开始执行呢,那么就可以终止。
elif async.failed():
print('执行失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')

send_task.py

from celery_task.tasks1 import test_celery
from celery_task.tasks2 import test_celery2 # 立即告知celery去执行test_celery任务,并传入一个参数
result = test_celery.delay('第一个的执行')
print(result.id)
result = test_celery2.delay('第二个的执行')
print(result.id)

添加任务(执行send_task.py),开启work:celery worker -A celery_task -l info -P eventlet,检查任务执行结果(执行check_result.py)

5.Celery执行定时任务

设定时间让celery执行一个任务

add_task.py

from celery_app_task import add
from datetime import datetime # 方式一
# v1 = datetime(2019, 2, 13, 18, 19, 56)
# print(v1)
# v2 = datetime.utcfromtimestamp(v1.timestamp())
# print(v2)
# result = add.apply_async(args=[1, 3], eta=v2)
# print(result.id) # 方式二
ctime = datetime.now()
# 默认用utc时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
from datetime import timedelta
time_delay = timedelta(seconds=10)
task_time = utc_ctime + time_delay # 使用apply_async并设定时间
result = add.apply_async(args=[4, 3], eta=task_time)
print(result.id)

类似于contab的定时任务

多任务结构中celery.py修改如下

from datetime import timedelta
from celery import Celery
from celery.schedules import crontab cel = Celery('tasks', broker='redis://127.0.0.1:6379/1', backend='redis://127.0.0.1:6379/2', include=[
'celery_task.tasks1',
'celery_task.tasks2',
])
cel.conf.timezone = 'Asia/Shanghai'
cel.conf.enable_utc = False cel.conf.beat_schedule = {
# 名字随意命名
'add-every-10-seconds': {
# 执行tasks1下的test_celery函数
'task': 'celery_task.tasks1.test_celery',
# 每隔2秒执行一次
# 'schedule': 1.0,
# 'schedule': crontab(minute="*/1"),
'schedule': timedelta(seconds=2),
# 传递参数
'args': ('test',)
},
# 'add-every-12-seconds': {
# 'task': 'celery_task.tasks1.test_celery',
# 每年4月11号,8点42分执行
# 'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),
# 'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),
# 'args': (16, 16)
# },
}

启动一个beat:celery beat -A celery_task -l info

启动work执行:celery worker -A celery_task -l info -P eventlet

6.Django中使用Celery

安装包

celery==3.1.25
django-celery==3.1.20

在项目目录下创建celeryconfig.py

import djcelery
djcelery.setup_loader()
CELERY_IMPORTS=(
'app01.tasks',
)
#有些情况可以防止死锁
CELERYD_FORCE_EXECV=True
# 设置并发worker数量
CELERYD_CONCURRENCY=4
#允许重试
CELERY_ACKS_LATE=True
# 每个worker最多执行100个任务被销毁,可以防止内存泄漏
CELERYD_MAX_TASKS_PER_CHILD=100
# 超时时间
CELERYD_TASK_TIME_LIMIT=12*30

在app01目录下创建tasks.py

from celery import task
@task
def add(a,b):
with open('a.text', 'a', encoding='utf-8') as f:
f.write('a')
print(a+b)

视图函数views.py

from django.shortcuts import render,HttpResponse
from app01.tasks import add
from datetime import datetime
def test(request):
# result=add.delay(2,3)
ctime = datetime.now()
# 默认用utc时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
from datetime import timedelta
time_delay = timedelta(seconds=5)
task_time = utc_ctime + time_delay
result = add.apply_async(args=[4, 3], eta=task_time)
print(result.id)
return HttpResponse('ok')

settings.py

INSTALLED_APPS = [
...
'djcelery',
'app01'
] ... from djagocele import celeryconfig
BROKER_BACKEND='redis'
BOOKER_URL='redis://127.0.0.1:6379/1'
CELERY_RESULT_BACKEND='redis://127.0.0.1:6379/2'

分布式异步框架celery的更多相关文章

  1. celery分布式异步框架

    1.什么是Celery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度 Celery架构 Celery的架构由三部分组成,消息中间件( ...

  2. django项目学习之异步框架celery

    最近用django一个网上商城项目的时候用两个扩展,感觉还不错,所以在此记录一下. 首先来说下celery,celery是一个处理异步任务的框架,需要下载celery包,一般在项目需要进行耗时操作的时 ...

  3. 分布式异步任务Celery

    -A代表APP celery -A tasks worker --loglevel=info -n nodemaster -------------- celery@nodemaster v4.1.0 ...

  4. django celery的分布式异步之路(一) 起步

    如果你看完本文还有兴趣的话,可以看看进阶篇:http://www.cnblogs.com/kangoroo/p/7300433.html 设想你遇到如下场景: 1)高并发 2)请求的执行相当消耗机器资 ...

  5. Python 并行分布式框架 Celery

    Celery 简介 除了redis,还可以使用另外一个神器---Celery.Celery是一个异步任务的调度工具. Celery 是 Distributed Task Queue,分布式任务队列,分 ...

  6. [源码解析] 并行分布式框架 Celery 之架构 (2)

    [源码解析] 并行分布式框架 Celery 之架构 (2) 目录 [源码解析] 并行分布式框架 Celery 之架构 (2) 0x00 摘要 0x01 上文回顾 0x02 worker的思考 2.1 ...

  7. [源码解析] 并行分布式框架 Celery 之架构 (1)

    [源码解析] 并行分布式框架 Celery 之架构 (1) 目录 [源码解析] 并行分布式框架 Celery 之架构 (1) 0x00 摘要 0x01 Celery 简介 1.1 什么是 Celery ...

  8. [源码解析] 并行分布式框架 Celery 之 worker 启动 (1)

    [源码解析] 并行分布式框架 Celery 之 worker 启动 (1) 目录 [源码解析] 并行分布式框架 Celery 之 worker 启动 (1) 0x00 摘要 0x01 Celery的架 ...

  9. [源码解析] 并行分布式框架 Celery 之 worker 启动 (2)

    [源码解析] 并行分布式框架 Celery 之 worker 启动 (2) 目录 [源码解析] 并行分布式框架 Celery 之 worker 启动 (2) 0x00 摘要 0x01 前文回顾 0x2 ...

随机推荐

  1. phoenix hbase Can't get master address from ZooKeeper; znode data == null

    问题描述: 项目一直在用的hbase节点  简称h1 由于网络问题,无法使用,重新找了一个网络稳定的节点  z1作为新的hbase库,库名称hbase_test,zookeeper等都配置好后,通过j ...

  2. 11/8 <matrix> LC 48 54 59

    48. Rotate Image 先按对角线对称图形,再水平对折. class Solution { public void rotate(int[][] matrix) { //1.transpos ...

  3. Newcoder 小白月赛20 H 好点

    Newcoder 小白月赛20 H 好点 自我感觉不错然后就拿出来了. 读读题之后我们会发现这是让我们求一堆数,然后这些数一定是递减的. 就像这样我们选的就是框起来的,然后我们可以看出来这一定是一个单 ...

  4. OsharpNS轻量级.net core快速开发框架简明入门教程-多上下文配置(多个数据库的使用)

    OsharpNS轻量级.net core快速开发框架简明入门教程 教程目录 从零开始启动Osharp 1.1. 使用OsharpNS项目模板创建项目 1.2. 配置数据库连接串并启动项目 1.3. O ...

  5. DataSet 反射转换成 List<T>

    /// <summary> /// DataSet转换成指定返回类型的实体集合 /// </summary> /// <typeparam name="T&qu ...

  6. 二进制安装K8S集群V1.16.3

    centos linux7.5 cat > /etc/hosts << EOF 192.168.199.221 master 192.168.199.222 node1 192.16 ...

  7. 一文搞定所有 web 自动化常见问题

    Firefox 1. Firefox路径问题 firefox火狐浏览器去完成自动化测试时,代码报了如下错误: Cannot find firefox binary in PATH. mark sure ...

  8. Charles设置断点- (超详解)

    1.选择你要设置断点的接口 2.右键选择 Breakpoints 3.断点的相关配置, Proxy ——>Breakpoint Settings 5.双击刚刚已经设置的断点接口,进行设置 6. ...

  9. 第二十节:Asp.Net Core WebApi生成在线文档

    一. 基本概念 1.背景 使用 Web API 时,了解其各种方法对开发人员来说可能是一项挑战. Swagger 也称为OpenAPI,解决了为 Web API 生成有用文档和帮助页的问题. 它具有诸 ...

  10. Docker 部署ELK之Sentinl日志报警

    前篇文章简单介绍了Docker 部署ELK,以及使用filebeat收集java日志.这篇我们介绍下日志报警配置,这里我们使用Sentinl插件. 1.修改kibana参数 进入elk容器,修改对应参 ...