$des$

$sol$

记 $f_i$ 表示考虑前 $i$ 个建筑, 并且第 $i$ 个建筑的高度不变的答案, 每次
转移时枚举上一个不变的建筑编号, 中间的一段一定变成相同的高度, 并且
高度小于等于两端的高度.
假设从 $f_j$ 转移且中间高度为 $t$, 则:
$$f_i = \sum_{k = j + 1} ^ {i - 1} (t - h_k) ^ 2 + c(h_j + h_i - 2t)$$
这样中间的高度可以 $O(1)$ 求二次函数的对称轴确定. 考虑优化转移,
因为中间高度要小于两端, 所以最多只有一个 $h_j > h_i$ 的 $j$ 能够转移. 可以
维护关于高度的单调栈, 这样有效的转移次数就是 O(n) 的.

$code$

#include <bits/stdc++.h>

using std::pair;
using std::vector;
using std::string; typedef long long ll;
typedef pair<int, int> pii; #define fst first
#define snd second
#define pb(a) push_back(a)
#define mp(a, b) std::make_pair(a, b)
#define debug(...) fprintf(stderr, __VA_ARGS__) template <typename T> bool chkmax(T& a, T b) { return a < b ? a = b, : ; }
template <typename T> bool chkmin(T& a, T b) { return a > b ? a = b, : ; } template <typename T> T read(T& x) {
int f = ; x = ;
char ch = getchar();
for(;!isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = x * + ch - ;
return x *= f;
} const int N = ; int n, C;
int h[N + ];
ll s[][N + ], dp[N + ]; ll solve(int x, int y, int mx) {
ll a = y - x - ;
ll b = - * (s[][y-] - s[][x]) - (x != ) * C - (y != n+) * C;
ll c = s[][y-] - s[][x] + 1ll * (x != ) * h[x] * C + 1ll * (y != n+) * h[y] * C; ll t;
t = (ll) ((- b / / a) + 0.5); chkmax<ll>(t, mx);
if(x != ) chkmin(t, (ll) h[x]);
if(y <= n) chkmin(t, (ll) h[y]); return a * t * t + b * t + c;
} int main() { read(n), read(C);
for(int i = ; i <= n; ++i) {
read(h[i]);
s[][i] = s[][i-] + h[i];
s[][i] = s[][i-] + 1ll * h[i] * h[i];
} static int stk[N + ], top; h[] = h[n + ] = ( << );
stk[top ++] = ; for(int i = ; i <= n+; ++i) {
dp[i] = dp[i-] + ((i == || i == n+) ? : 1ll * C * std::abs(h[i] - h[i-]));
while(top > && h[stk[top-]] <= h[i]) {
if(top > )
chkmin(dp[i], dp[stk[top-]] + solve(stk[top-], i, h[stk[top-]]));
-- top;
}
stk[top ++] = i;
}
printf("%lld\n", dp[n + ]); return ;
}

Problem 8 dp的更多相关文章

  1. [HDU 5293]Tree chain problem(树形dp+树链剖分)

    [HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...

  2. [LightOJ1004]Monkey Banana Problem(dp)

    题目链接:http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1004 题意:数塔的变形,上面一个下面一个,看清楚 ...

  3. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

  4. (LightOJ 1004) Monkey Banana Problem 简单dp

    You are in the world of mathematics to solve the great "Monkey Banana Problem". It states ...

  5. 【UVA 1380】 A Scheduling Problem (树形DP)

    A Scheduling Problem   Description There is a set of jobs, say x1, x2,..., xn <tex2html_verbatim_ ...

  6. BZOJ 2302: [HAOI2011]Problem c( dp )

    dp(i, j)表示从i~N中为j个人选定的方案数, 状态转移就考虑选多少人为i编号, 然后从i+1的方案数算过来就可以了. 时间复杂度O(TN^2) ------------------------ ...

  7. BZOJ 2318: Spoj4060 game with probability Problem( 概率dp )

    概率dp... http://blog.csdn.net/Vmurder/article/details/46467899 ( from : [辗转山河弋流歌 by 空灰冰魂] ) 这个讲得很好 , ...

  8. hdu 5106 Bits Problem(数位dp)

    题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...

  9. hiho1259 A Math Problem (数位dp)

    题目链接:http://hihocoder.com/problemset/problem/1259 题目大意:g(t)=(f(i)%k=t)的f(i)的个数 求所有的(0-k-1)的g(i)的异或总值 ...

  10. BZOJ 2302: [HAOI2011]Problem c [DP 组合计数]

    2302: [HAOI2011]Problem c Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 648  Solved: 355[Submit][S ...

随机推荐

  1. 开源图像识别库OpenCV基于Maven的开发环境准备

    1.安装 JDK 8+,并设置 JAVA_HOME 环境变量 2.安装 Maven,并将 “/bin” 子目录设置到 path 环境变量 3.下载 OpenCV,官网传送门 也可以直接下载本人瘦身之后 ...

  2. Oracle 11g安装过程工作Oracle数据库安装图解

    一.Oracle 下载 注意Oracle分成两个文件,下载完后,将两个文件解压到同一目录下即可. 路径名称中,最好不要出现中文,也不要出现空格等不规则字符. 官方下地址: oracle.com/tec ...

  3. 实战远程文件同步(Remote File Sync)

    1. 远程文件同步的常见方式: 1.cron + rsync 优点: 简单 缺点:定时执行,实时性比较差:另外,rsync同步数据时,需要扫描所有文件后进行比对,进行差量传输.如果文件数量达到了百万甚 ...

  4. Ubuntu 18.04 上使用xrdp远程桌面连接(Windows远程桌面连接)

    Ubuntu18.04设置#安装xrdpsudo apt-get install xrdp #安装vnc4serversudo apt-get install vnc4server tightvncs ...

  5. Hadoop之MapReduce流程

    hadoopMapReduce 1. MapReduce流程 2. Shuffle流程 1. MapReduce流程 MapReduce流程 切片: 对数据进行逻辑划分,默认大小是一个block块大小 ...

  6. 入门Docker,你要下载什么?注册什么?

    此随笔根据前人经验改编并亲自实践.遇到问题提供出相应解决方法. 入门Docker,你要下载什么?注册什么? Docker.app你肯定是要下载的!此教程应用于MAC系统PC不保证适用 Docker f ...

  7. Mongodb 学习笔记(二) :索引

    Mongodb 是基于集合建立索引 (Index),索引的作用类似于传统关系型数据库,目的是为了提高查询速度 . 如果没有建立索引, Mongodb  在读取数据时必须扫描集合中的 所有文档记录. 这 ...

  8. React Native 开发豆瓣评分(二)路由配置

    路由管理使用官方推荐的 React Navigation; 配置环境 安装相关依赖 yarn add react-navigation react-native-gesture-handler Lin ...

  9. jenkins 启动

    docker pull jenkinsci/blueocean docker run \ -u root \ --rm \ -d \ -p 8888:8080 \ -p 50000:50000 \ - ...

  10. 阿里云ECS服务器设置端口(允许访问设置)

    1.登录阿里云找到对应的服务器按照如下箭头指示: 2.点击“安全组配置”后进入到如下界面,点击“配置规则”进入详情配置界面. 3.点击“修改”可对特定的端口进行访问配置,如下图: 至此结束.