【计算机视觉】目标检测之ECCV2016 - SSD Single Shot MultiBox Detector
本文转载自:
http://www.cnblogs.com/lillylin/p/6207292.html
SSD论文阅读(Wei Liu——【ECCV2016】SSD Single Shot MultiBox Detector)
目录
- 作者及相关链接
- 文章的选择原因
- 方法概括
- 方法细节
- 相关背景补充
- 实验结果
- 与相关文章的对比
- 总结
作者
- intro: ECCV 2016 Oral
- arxiv: http://arxiv.org/abs/1512.02325
- paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf
- slides: http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv2016_slide.pdf
- github: https://github.com/weiliu89/caffe/tree/ssd
- video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973
- github(MXNet): https://github.com/zhreshold/mxnet-ssd
- github: https://github.com/zhreshold/mxnet-ssd.cpp
- github(Keras): https://github.com/rykov8/ssd_keras
文章的选择原因
- 性能好,single stage
方法概括
文章的方法介绍
- SSD主要用来解决目标检测的问题(定位+分类),即输入一张待测图像,输出多个box的位置信息和类别信息
- 测试时,输入一张图像到SSD中,网络输出一个下图最右边的tensor(多维矩阵),对该矩阵进行非极大值抑制(NMS)就能得到每个目标的位置和label信息
Figure2的最右图的1th-20th Channel表示类别,每一个Channel上的map对应原图,last 4 channel的每一个map分别对应x,y,w,h的偏移量。最后4个通道可以确定一个box的位置信息,前20个通道确定类别信息。
方法的pipeline和关键点
方法细节
模型结构
多尺度特征图
用来预测的卷积滤波器
defaul box
groundTruth的标定,损失函数
default box和尺度的选择
SSD的训练——Hard negative mining
SSD的训练——数据扩增
相关背景补充
Atrous算法(hole算法)
FPS/SPF, Jaccard overlap
二类分类/检测常用的评价标准 (recall, precision, f-measure, accuracy, error, PR曲线和ROC曲线,AP,AUC)
ImageNet多类分类的评价标准
ImageNet单目标检测的评价标准
ImageNet(多)目标检测的评价标准
实验结果
PASCAL VOC2007 test detection结果
使用数据扩增、多尺度default box、atrous算法的对比效果
SSD512在某类Ianimals)上的检测性能可视化
SSD对于目标大小的敏感性实验
SSD使用的feature map的个数对结果的影响
示例结果
时间和速度
与相关文章的对比
原始R-CNN方法的变形
Faster R-CNN和SSD对比
YOLO和SSD对比
总结
文章贡献
- SSD, a single-shot detector for multiple categories (faster than YOLO, accurate as Faster R-CNN)
- The
core of SSD is predicting category scores and box offsets for a fixed set of default
bounding boxes using small convolutional filters applied to multiple
feature maps from different layers - Experimental evidence: high
accuracy, high speed, simple end-to-end training (single shot)
SSD对于其他方法的改进的关键点
- Using a small convolutional filter to predict object categories and offsets in bounding box locations
- Using separate predictors (filters) for different aspect ratio detections
- Using multiple layers for prediction at different scales (apply these
filters to multiple feature maps to perform detection at multiple stages)
【计算机视觉】目标检测之ECCV2016 - SSD Single Shot MultiBox Detector的更多相关文章
- 目标检测--SSD: Single Shot MultiBox Detector(2015)
SSD: Single Shot MultiBox Detector 作者: Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, ...
- 深度学习论文翻译解析(十四):SSD: Single Shot MultiBox Detector
论文标题:SSD: Single Shot MultiBox Detector 论文作者:Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Sz ...
- SSD(Single Shot MultiBox Detector)的安装配置和运行
下文图文介绍转自watersink的博文SSD(Single Shot MultiBox Detector)不得不说的那些事. 该方法出自2016年的一篇ECCV的oral paper,SSD: Si ...
- SSD: Single Shot MultiBox Detector
By Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexande ...
- 机器视觉:SSD Single Shot MultiBox Detector
今天介绍目标检测中非常著名的一个框架 SSD,与之前的 R-CNN 系列的不同,而且速度比 YOLO 更快. SSD 的核心思想是将不同尺度的 feature map 分成很多固定大小的 box,然后 ...
- 论文笔记 SSD: Single Shot MultiBox Detector
转载自:https://zhuanlan.zhihu.com/p/33544892 前言 目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型(参考RefineDet):(1)two-st ...
- SSD: Single Shot MultiBox Detector 编译方法总结
SSD是一个基于单网络的目标检测框架,它是基于caffe实现的,所以下面的教程是基于已经编译好的caffe进行编译的. caffe的编译可以参考官网 caffe Installation Instal ...
- [论文理解]SSD:Single Shot MultiBox Detector
SSD:Single Shot MultiBox Detector Intro SSD是一套one-stage算法实现目标检测的框架,速度很快,在当时速度超过了yolo,精度也可以达到two-stag ...
- 论文阅读笔记二十九:SSD: Single Shot MultiBox Detector(ECCV2016)
论文源址:https://arxiv.org/abs/1512.02325 tensorflow代码:https://github.com/balancap/SSD-Tensorflow 摘要 SSD ...
随机推荐
- lp3676 小清新数据结构题
传送门 Description 有一棵\(n\)个点的树,每个点有一个点权. 现在有\(q\)次操作,每次操作是修改一个点的点权或指定一个点,询问以这个点为根时每棵子树点权和的平方和. Solutio ...
- 解决manjaro无法外接显示器
https://unix.stackexchange.com/questions/303751/hdmi-port-not-working-manjaro https://blog.csdn.net/ ...
- curl获得cookie数据<转>
CURL *curl; CURLcode res; struct curl_slist *headers = NULL; curl_global_init(CURL_GLOBAL_ALL); curl ...
- Spring boot+Vue全栈开发---Spring Boot文件上传
https://blog.csdn.net/Day_and_Night_2017/article/details/86980743 文件上传涉及到两个组件:CommonsMultipartResolv ...
- C# WinForm MessageBox弹窗倒计时的自动关闭
[DllImport("user32.dll", EntryPoint = "FindWindow")] private static exter ...
- Linux命令:ipcs/ipcrm命令
ipcs/ipcrm命令 是linux/uinx上提供关于一些进程间通信方式的信息,包括共享内存,消息队列,信号 多进程间通信常用的技术手段包括共享内存.消息队列.信号量等等,Linux系统下自带的 ...
- 微信小程序网络通信(一)
本文链接:https://blog.csdn.net/melovemingming/article/details/82831749微信小程序网络服务器网络配置支持request 普通网络请求.支持套 ...
- Docker Rootless Container
容器安全拾遗 - Rootless Container初探-云栖社区-阿里云https://yq.aliyun.com/articles/700923 medium.comhttps://medium ...
- ffmpeg-php扩展
php视频缩略图,较常用的是ffmpeg-php 1: 安装 ffmpeg ffmpeg的下载链接 http://ffmpeg.org/download.html 解压安装包 tar -jxvf f ...
- 线程池+同步io和异步io(浅谈)
线程池+同步io和异步io(浅谈) 来自于知乎大佬的一个评论 我们的系统代码从同步方式+线程池改成异步化之后压测发现性能提高了一倍,不再有大量的空闲线程,但是CPU的消耗太大,几乎打满,后来改成协程化 ...