莫烦TensorFlow_08 tensorboard可视化进阶
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt #
# add layer
#
def add_layer(inputs, in_size, out_size,n_layer, activation_function = None):
layer_name = 'layer%s' % n_layer
with tf.name_scope(layer_name):
with tf.name_scope('Weights'):
Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W') # hang lie
tf.summary.histogram(layer_name + '/weights', Weights)#保存成一个直方图,bin是取值
with tf.name_scope('biases'):
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name = 'b')
tf.summary.histogram(layer_name + '/biases', biases)#注意histogram的路径
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b) tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs
#
#make up some data
#
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise #
#define placeholder
#
with tf.name_scope('inputs'):
xs = tf.placeholder(tf.float32, [None, 1], name = 'x_input') #注意命名
ys = tf.placeholder(tf.float32, [None, 1], name = 'y_input') #add hidden layer
l1 = add_layer(xs, 1, 10, n_layer = 1,activation_function = tf.nn.relu)
#add output layer
prediction = add_layer(l1, 10, 1, n_layer = 2, activation_function = None) #the error between prediction and real data
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1] ))
tf.summary.scalar('loss', loss)#记录operation,是存储在scaler里的 with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) sess = tf.Session()
merged = tf.summary.merge_all() #所有的summary在merge以后,在一个run中就可执行
writer = tf.summary.FileWriter("logs/", sess.graph) #定义writer #import step
sess.run(tf.global_variables_initializer() ) #
# Session
# for i in range(1000):
sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
if i % 50 == 0:
result = sess.run(merged, # 否则要一个个run summary。
feed_dict = {xs:x_data, ys:y_data}) writer.add_summary(result, i)#按序列写入结果
print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))
莫烦TensorFlow_08 tensorboard可视化进阶的更多相关文章
- 莫烦TensorFlow_07 tensorboard可视化
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_ ...
- 莫烦TensorFlow_06 plot可视化
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_ ...
- 莫烦大大TensorFlow学习笔记(9)----可视化
一.Matplotlib[结果可视化] #import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf i ...
- tensorflow学习笔记-bili莫烦
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...
- tensorflow 莫烦教程
1,感谢莫烦 2,第一个实例:用tf拟合线性函数 import tensorflow as tf import numpy as np # create data x_data = np.random ...
- Tensorflow 搭建神经网络及tensorboard可视化
1. session对话控制 matrix1 = tf.constant([[3,3]]) matrix2 = tf.constant([[2],[2]]) product = tf.matmul(m ...
- scikit-learn学习笔记-bili莫烦
bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...
- 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...
- Tensorflow学习笔记3:TensorBoard可视化学习
TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...
随机推荐
- 【声明式事务】Spring声明式事务实现(三)
以MyBatis为例. 一.基于注解的声明式事务配置 1. 添加tx名字空间 xmlns:tx="http://www.springframework.org/schema/tx" ...
- luoguP4151 [WC2011]最大XOR和路径
题意 这题有点神啊. 首先考虑注意这句话: 路径可以重复经过某些点或边,当一条边在路径中出现了多次时,其权值在计算 XOR 和时也要被计算相应多的次数 也就是说如果出现下面的情况: 我们可以通过异或上 ...
- 工具资源系列之 github 上各式各样的小徽章从何而来?
前言 平时大家在在逛 github 时或多或少都看到过项目首页各式各样的小徽章,不知道你是否和我一样好奇这些小徽章都是哪来的呢? 首先我们先来一睹为快目前前端开发的三大主流框架: var ,看一看他们 ...
- Hbulder 调试安卓app
目前开发app有原生开发和web开发两种方式,各有各的优势和劣势,利用web技术开发app可以只用写一套代码,即可以在Android和ios同时应用,比较方便和快捷,有很多中不同的开发方式,例如cor ...
- Vue v-if,v-else-if,v-else的使用
v-else-if 要紧跟 v-if v-else要紧跟v-else-if 或 v-if 代码: <!doctype html> <html lang="en"& ...
- 开发者必备Linux命令
开发者必备Linux常用命令,掌握这些命令绝对够了,基于CenterOS7.6. 系统服务管理 systemctl 输出系统中各个服务的状态: systemctl list-units --type= ...
- Unity Profiler 记录
版本 Unity 2018.4.6f1 空包 development build 魅蓝 note3 OPPO R9 VIVO x9 华为 P8 青春版 小米 8 SE iphone se Other ...
- LeetCode 328:奇偶链表 Odd Even Linked List
给定一个单链表,把所有的奇数节点和偶数节点分别排在一起.请注意,这里的奇数节点和偶数节点指的是节点编号的奇偶性,而不是节点的值的奇偶性. 请尝试使用原地算法完成.你的算法的空间复杂度应为 O(1), ...
- torch_12_dataset和dataLoader,Batchnormalization解读
参考博客https://blog.csdn.net/qq_36556893/article/details/86505934 深度学习入门之pytorch https://github.com/L1a ...
- ASP.NET MVC 中的过滤器
这里用实例说明各种过滤器的用法,有不对的地方还请大神指出,共同探讨. 1. ActionFilter 方法过滤器: 接口名为 IActionFilter ,在控制器方法调用前/后执行. 在新建的MVC ...