洛谷 P5564: [Celeste-B]Say Goodbye
题目传送门:洛谷 P5564。
题意简述:
有 \(n\) 个点,染 \(m\) 种颜色,第 \(i\) 种颜色染恰好 \(cnt_i\) 个节点,满足 \(cnt_1+cnt_2+\cdots+cnt_m=n\)。
求这 \(n\) 个点组成的本质不同的无标号+有序(子树有序)基环(环长至少为 \(2\))树个数。
两棵基环树本质相同当且仅当通过环的旋转(不能翻转)后能使得它们完全相同。
题解:
首先考虑只染一种颜色的 \(n\) 个点(\(n\ge1\))的无标号有根有序树个数计数。
考虑这棵树的括号序,发现其括号序是长度为 \(n\) 的合法括号串,但是必须满足最外层括号(根节点)只有一对。
即 \(n\) 个点的有根有序树个数为 \(n-1\) 对括号组成的合法括号串,即第 \(n-1\) 个卡特兰数。
令 \(n\) 个点的有根有序树个数为 \(t_n\),令其 OGF 为 \(\displaystyle T=\sum_{i=1}^{+\infty}t_ix^i\),即 \(T=xC\),其中 \(C\) 为卡特兰数的 OGF。
再考虑染色的问题,不难发现只要有序,则染色和树形态是相互独立的。
即只要乘上一个多重组合数 \(\displaystyle\binom{n}{cnt_1,cnt_2,\ldots,cnt_m}\) 即可。
回到原问题,枚举环长 \(k\),使用 Burnside 引理统计等价类个数。环的旋转置换的统计方法是常见的,即枚举因数 \(d\),等价于循环 \(d\) 格的置换个数为 \(\varphi\!\left(\dfrac{k}{d}\right)\)。则有:
\[\begin{aligned}\mathbf{Ans}&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi\!\left(\dfrac{k}{d}\right)\!\cdot f(d)\end{aligned}\]
其中 \(f(d)\) 表示循环 \(d\) 格时的不动点个数。
循环 \(d\) 格时,存在 \(d\) 个长度为 \(\dfrac{k}{d}\) 的循环,循环内的每个元素都代表一棵外向树。为了方便进一步的展开,交换 \(d\) 与 \(\dfrac{k}{d}\) 的意义,枚举 \(d\) 为循环长度,而 \(\dfrac{k}{d}\) 为循环个数。此时每个循环内的树形态相互独立,而且染色和树形态相互独立,但每个循环的树形态必须相同,且染色也必须相同,也就是说有 \(\dfrac{k}{d}\) 棵树,且总点数为 \(\dfrac{n}{d}\),并且需要满足每种颜色的个数是 \(d\) 的倍数,即 \(\left.d\:\middle|\:\gcd\limits_{i=1}^{m}cnt_i\right.\)。则公式变为:
\[\begin{aligned}\mathbf{Ans}&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot f\!\left(\dfrac{k}{d}\right)\!\\&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot\!\left\{\!\left[d\:\middle|\:\gcd\limits_{i=1}^{m}cnt_i\right]\!\cdot\!\left[x^{n/d}\right]\!T^{k/d}\cdot\binom{n/d}{cnt_1/d,cnt_2/d,\ldots,cnt_m/d}\right\}\!\end{aligned}\]
此时有两条路可走,其一是留下生成函数 \(T\) 的形式不变,其二是考虑使用卡特兰数的性质。
先使用第一种做法,考虑交换求和顺序并改变求和指标 \(k\) 为 \(kd\):
\[\begin{aligned}\mathbf{Ans}&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot\!\left\{\!\left[d\:\middle|\:\gcd_{i=1}^{m}cnt_i\right]\!\cdot\!\left[x^{n/d}\right]\!T^{k/d}\cdot\binom{n/d}{cnt_1/d,cnt_2/d,\ldots,cnt_m/d}\right\}\!\\&=-t_n\binom{n}{cnt_{1\ldots m}}+\sum_{d\mid\gcd_{i=1}^{m}cnt_i}\varphi(d)\cdot\binom{n/d}{cnt_{1\ldots m}/d}\cdot\!\left[x^{n/d}\right]\!\sum_{k=1}^{n/d}\frac{T^k}{kd}\\&=-t_n\binom{n}{cnt_{1\ldots m}}+\sum_{d\mid\gcd_{i=1}^{m}cnt_i}\frac{\varphi(d)}{d}\cdot\binom{n/d}{cnt_{1\ldots m}/d}\cdot\!\left[x^{n/d}\right]\!\sum_{k=1}^{+\infty}\frac{T^k}{k}\\&=-t_n\binom{n}{cnt_{1\ldots m}}+\sum_{d\mid\gcd_{i=1}^{m}cnt_i}\frac{\varphi(d)}{d}\cdot\binom{n/d}{cnt_{1\ldots m}/d}\cdot\!\left[x^{n/d}\right]\!(-\ln(1-T))\end{aligned}\]
第二行的第一项是因为后面统计了 \(d=k=1\) 的情况,但是实际不需要,所以要减掉。
最后一行利用了 \(\ln\) 在 \(1\) 处展开的的泰勒级数:\(\displaystyle\ln(1-x)=-\sum_{i=1}^{+\infty}\frac{x^i}{i}\)。
先使用多项式对数函数计算出 \(-\ln(1-T)\),按照此式直接计算即可。时间复杂度 \(\mathcal{O}(n\log n+\sigma_0(n)\cdot m)\)。
第二种做法是考虑卡特兰数和自身的 \(m\) 次卷积的第 \(n\) 项的通项。
有公式 \(\displaystyle[x^n]C^m=\binom{2n+m-1}{n}-\binom{2n+m-1}{n-1}\),将此式代入可得:
\[\begin{aligned}\mathbf{Ans}&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot\!\left\{\!\left[d\:\middle|\:\gcd\limits_{i=1}^{m}cnt_i\right]\!\cdot\!\left[x^{n/d}\right]\!T^{k/d}\cdot\binom{n/d}{cnt_1/d,cnt_2/d,\ldots,cnt_m/d}\right\}\!\\&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot\!\left\{\!\left[d\:\middle|\:\gcd\limits_{i=1}^{m}cnt_i\right]\!\cdot\!\left(\binom{2n/d-k/d-1}{2n/d-2k/d}-\binom{2n/d-k/d-1}{2n/d-2k/d-1}\right)\!\cdot\binom{n/d}{cnt_{1\ldots m}/d}\right\}\!\\&=-t_n\binom{n}{cnt_{1\ldots m}}+\sum_{d\mid\gcd_{i=1}^{m}cnt_i}\frac{\varphi(d)}{d}\cdot\binom{n/d}{cnt_{1\ldots m}/d}\sum_{k=1}^{n/d}\frac{1}{k}\!\left(\binom{2n/d-k-1}{2n/d-2k}-\binom{2n/d-k-1}{2n/d-2k-1}\right)\!\end{aligned}\]
直接计算即可,复杂度 \(\mathcal{O}(\sigma_0(n)(n+m))\)。
洛谷 P5564: [Celeste-B]Say Goodbye的更多相关文章
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
- 洛谷P1710 地铁涨价
P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交 讨论 题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...
- 洛谷P1371 NOI元丹
P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交 讨论 题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...
- 洛谷P1538迎春舞会之数字舞蹈
题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...
- 洛谷八月月赛Round1凄惨记
个人背景: 上午9:30放学,然后因为学校举办读书工程跟同学去书城选书,中午回来开始打比赛,下午又回老家,中间抽出一点时间调代码,回家已经8:50了 也许是7月月赛时“连蒙带骗”AK的太幸运然而因同学 ...
- 洛谷 P1379 八数码难题 Label:判重&&bfs
特别声明:紫书上抄来的代码,详见P198 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给 ...
随机推荐
- RabbitMQ学习笔记(一、消息中间件基础)
目录: 什么是消息中间件 消息中间件的作用 JMS规范 AMQP协议 RabbitMQ简介 Hello World 什么是消息中间件: 消息中间件(Message Queue Middleware,简 ...
- IntelliJ IDEA安装与破解教程(一)
官网地址:https://www.jetbrains.com/idea/ IntelliJ IDEA分为:旗舰版(Ultimate).社区版(Community) 旗舰版是收费的,社区版则是免费的.旗 ...
- go tcp通信
----tcp 客户端 package main import ( "net" "fmt" ) func main() { conn,err := net.Di ...
- VBS实现UTC时间和本地时间互转
本地时间转UTC时间 dim SWDT, datetime, utcTime Set SWDT = CreateObject("WbemScripting.SWbemDateTime&quo ...
- 用scanf清空缓冲区 对比fflush
fflush会将缓冲数据打印到屏幕或者输出磁盘,scanf将丢弃. 如上图.
- stm32按键配置
前言:我们都知道开发板上除了有经典的流水灯之外,还有一个必备的练习硬件--按键(key),下面继续来完成按键的配置. 1.通过查看原理图,找出按键(key)的管脚名字和对应芯片上的I/O口,四个I/O ...
- hw笔试题-02
#include<stdio.h> #include<string.h> typedef struct { char *mem; char len; }m_table_t; i ...
- 解惑:如何使得寝室的电脑和实验室的电脑远程相互访问(Linux和Windows)
解惑:如何使得寝室的电脑和实验室的电脑远程相互访问 一.前言 自从接触计算机网络之后就一直想着把实验室的电脑和自己寝室的电脑远程连接起来,结果总是郁郁不能成功,网上这样的教材也少的可怜,于是总是搁置下 ...
- Unity开发实战探讨-资源的加载释放最佳策略简要心得
Unity开发实战探讨-资源的加载释放最佳策略简要心得 看过我另外一篇关于Unity资源释放随笔<Unity开发实战探讨-资源的加载释放最佳策略>如果觉得略微复杂,那么下面是一些比较简要的 ...
- axios和fetch区别对比
axios axios({ method: 'post', url: '/user/12345', data: { firstName: 'Fred', lastName: 'Flintstone' ...