/*
*CoGroup
*/ final StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment(); DataStream<Tuple2<String, String>> dataStream1 = streamExecutionEnvironment.socketTextStream("127.0.0.1", 9000)
.map(new MapFunction<String, Tuple2<String, String>>() {
@Override
public Tuple2<String, String> map(String s) throws Exception {
List<String> strs = Arrays.asList(s.split(" "));
return new Tuple2<>(strs.get(0), strs.get(1));
}
}); DataStream<Tuple2<String, String>> dataStream2 = streamExecutionEnvironment.socketTextStream("127.0.0.1", 9001)
.map(new MapFunction<String, Tuple2<String, String>>() {
@Override
public Tuple2<String, String> map(String s) throws Exception {
List<String> strs = Arrays.asList(s.split(" "));
return new Tuple2<>(strs.get(0), strs.get(1));
}
}); dataStream1.coGroup(dataStream2)
.where(new KeySelector<Tuple2<String, String>, String>() {
@Override
public String getKey(Tuple2<String, String> stringStringTuple2) throws Exception {
return stringStringTuple2.f0;
}
})
.equalTo(new KeySelector<Tuple2<String, String>, String>() {
@Override
public String getKey(Tuple2<String, String> stringStringTuple2) throws Exception {
return stringStringTuple2.f0;
}
})
.window(ProcessingTimeSessionWindows.withGap(Time.seconds(30)))
.trigger(CountTrigger.of(1))
.apply(new CoGroupFunction<Tuple2<String, String>, Tuple2<String, String>, String>() {
@Override
public void coGroup(Iterable<Tuple2<String, String>> first, Iterable<Tuple2<String, String>> second, Collector<String> out) throws Exception {
StringBuilder stringBuilder = new StringBuilder("Data Stream1: \n");
first.forEach(item -> stringBuilder.append(item.f0 + "<=>" + item.f1 + "\n")); stringBuilder.append("Data Stream2: \n");
second.forEach(item -> stringBuilder.append(item.f0 + "<=>" + item.f1 + "\n"));
out.collect(stringBuilder.toString());
}
}).print(); streamExecutionEnvironment.execute();
/**
* Join
* Join条件为两个流中的数据((String, String))的第一个元素相同
*/
final StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment(); DataStream<Tuple2<String, String>> dataStream1 = streamExecutionEnvironment.fromElements(new Tuple2<>("hello", "flink")); DataStream<Tuple2<String, String>> dataStream2 = streamExecutionEnvironment.fromElements(new Tuple2<>("hello", "blink")); dataStream1.join(dataStream2)
.where(new KeySelector<Tuple2<String, String>, String>() {
@Override
public String getKey(Tuple2<String, String> stringStringTuple2) throws Exception {
return stringStringTuple2.f0;
}
})
.equalTo(new KeySelector<Tuple2<String, String>, String>() {
@Override
public String getKey(Tuple2<String, String> stringStringTuple2) throws Exception {
return stringStringTuple2.f0;
}
})
.window(ProcessingTimeSessionWindows.withGap(Time.seconds(30)))
.trigger(CountTrigger.of(1))
.apply(new JoinFunction<Tuple2<String, String>, Tuple2<String, String>, String>() {
@Override
public String join(Tuple2<String, String> first, Tuple2<String, String> second) throws Exception {
return first.f1 + "<=>" + second.f1;
}
}).print();
streamExecutionEnvironment.execute(); // 运行结果
2> flink<=>blink

Flink入门 - CoGroup和Join的更多相关文章

  1. Flink学习笔记:Operators之CoGroup及Join操作

    本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...

  2. Flink入门(五)——DataSet Api编程指南

    Apache Flink Apache Flink 是一个兼顾高吞吐.低延迟.高性能的分布式处理框架.在实时计算崛起的今天,Flink正在飞速发展.由于性能的优势和兼顾批处理,流处理的特性,Flink ...

  3. Flink入门(四)——编程模型

    flink是一款开源的大数据流式处理框架,他可以同时批处理和流处理,具有容错性.高吞吐.低延迟等优势,本文简述flink的编程模型. 数据集类型: 无穷数据集:无穷的持续集成的数据集合 有界数据集:有 ...

  4. Flink入门-第一篇:Flink基础概念以及竞品对比

    Flink入门-第一篇:Flink基础概念以及竞品对比 Flink介绍 截止2021年10月Flink最新的稳定版本已经发展到1.14.0 Flink起源于一个名为Stratosphere的研究项目主 ...

  5. Flink入门(二)——Flink架构介绍

    1.基本组件栈 了解Spark的朋友会发现Flink的架构和Spark是非常类似的,在整个软件架构体系中,同样遵循着分层的架构设计理念,在降低系统耦合度的同时,也为上层用户构建Flink应用提供了丰富 ...

  6. Flink入门(三)——环境与部署

    flink是一款开源的大数据流式处理框架,他可以同时批处理和流处理,具有容错性.高吞吐.低延迟等优势,本文简述flink在windows和linux中安装步骤,和示例程序的运行,包括本地调试环境,集群 ...

  7. 不一样的Flink入门教程

    前言 微信搜[Java3y]关注这个朴实无华的男人,点赞关注是对我最大的支持! 文本已收录至我的GitHub:https://github.com/ZhongFuCheng3y/3y,有300多篇原创 ...

  8. flink 入门

    http://ifeve.com/flink-quick-start/ http://vinoyang.com/2016/05/02/flink-concepts/ http://wuchong.me ...

  9. 第02讲:Flink 入门程序 WordCount 和 SQL 实现

    我们右键运行时相当于在本地启动了一个单机版本.生产中都是集群环境,并且是高可用的,生产上提交任务需要用到flink run 命令,指定必要的参数. 本课时我们主要介绍 Flink 的入门程序以及 SQ ...

随机推荐

  1. MySQL与MariaDB核心特性比较详细版v1.0(覆盖mysql 8.0/mariadb 10.3,包括优化、功能及维护)

    注:本文严禁任何形式的转载,原文使用word编写,为了大家阅读方便,提供pdf版下载. MySQL与MariaDB主要特性比较详细版v1.0(不含HA).pdf 链接:https://pan.baid ...

  2. mac opencv 提示摄像头权限问题

    通常在iOS开发下,我们的app需要在Info.plist文件中配置所需要的各种限制:如摄像头权限: 本次我们在mac下创建了一个command line 程序,并且设定是c++开发,并配置了open ...

  3. Eclipse中SpringBoot项目POM文件报UnKnown的解决方案

    在项目中使用spring-boot-starter-parent的2.1.5.RELEASE版本时发现会出现POM错误(Unknown),其实这错误可以无视,但如果你实在看不下去可以在POM中添加如下 ...

  4. jquery ajax Uncaught TypeError :Illegal invocation 报错

    使用jquery ajax异步提交的时候报Uncaught TypeError :Illegal invocation错误,报错如图: 基本上,导致这个错误的原因一般有以下两点: 1.请求类型有误,如 ...

  5. cmd 域名生效检测

    nslookup -qt=ns xxx.baidu.comnslookup -qt=txt xxx.baidu.com

  6. @vue/cli 4.1.1安装

    按照安装步骤,先卸载,再安装,最终,查看vue -V 的版本都是3.8.2,也就是说并没有安装成功,于是,考虑用yarn去安装 1,首先清除缓存: yarn cache clean 2,yarn设置淘 ...

  7. Java 动态代理与AOP

    动态代理与AOP 代理模式 代理模式给某一个目标对象(target)提供代理对象(proxy),并由代理对象控制对target对象的引用. 模式图: 代理模式中的角色有: 抽象对象角色(Abstrac ...

  8. java + selenium + testng实现简单的UI自动化

    新建Maven项目,添加需要的依赖 1.新建一个Maven项目 2.在pom.xml中添加需要的依赖,这里只要selenium和testng就行 <!-- https://mvnreposito ...

  9. 在 Java 中不使用多余变量交换两个字符串

    在 Java 中不使用多余变量交换两个字符串 public class Test { public static void main(String[] args) { String a = " ...

  10. SQL Server 数据库启动过程(用户数据库加载过程的疑难杂症)

    前言 本篇主要是上一篇文章的补充篇,上一篇我们介绍了SQL Server服务启动过程所遇到的一些问题和解决方法,可点击查看,我们此篇主要介绍的是SQL Server启动过程中关于用户数据库加载的流程, ...