Good Numbers(HDU5447+唯一分解)
题目链接
题面
题意
首先定义对于\(k\)的好数\(u\):如果\(u\leq k\)且\(u\)的所有质因子与\(k\)的质因子一样则称\(u\)对于\(k\)是一个好数。
现给你两个数\(k1,k2(1\leq k1,k2\leq 10^{24})\),要你求\(k1,k2\)的好数个数,对于\(k1,k2\)有两者的最大质因子一定相同第二大质因子一定不同。
思路
我们知道对于小于等于\(10^{24}\)的数最多有三个大于\(10^6\)的质因子,因此对于数\(k1,k2\)我们可以先将其小于等于\(10^6\)的质因子全部分离出来,那么最后最多还剩三个质因子的指数相乘。
我们设\(p1,p2,p3\)为二者的最一、二、三大质因子。
如果最后剩余的\(k1,k2\)只剩\(p1\),那么就只能是\(p1\)的幂次,此时可以通过枚举求出\(p1\)的指数,因为大于\(1e6\)的数最多\(3\)次就大于\(10^{24}\)了。
如果最后剩余的\(k1,k2\)剩\(p1,p2\)的幂次相乘,那么\(gcd(k1,k2)\)一定是\(p1\)的幂次,因为二者的\(p2\)一定不同嘛~这样我们可以通过两次枚举得到其指数。
如果最后剩余的\(k1,k2\)剩\(p1,p2,p3\)的幂次相乘,那么\(p1,p2,p3\)的指数一定都是\(1\)次。
因为好数的要求是需要质因子与\(k\)相同,所以每个质因子的次数至少为\(1\),所以如果\(k=p_1^{c_1}p_2^{c_2}\dots\),那么答案就是\(\prod\limits_{i=1}^{n}c_i\)。
代码实现如下
import java.util.*;
import java.math.*;
public class Main {
static int cnt = 0;
static Boolean v[] = new Boolean[1000007];
static int p[] = new int[1000007];
public static void init() {
for(int i = 0; i <= 1000000; ++i) v[i] = false;
for(int i = 2; i <= 1000000; ++i) {
if(!v[i]) p[cnt++] = i;
for(int j = 0; j < cnt && i * p[j] <= 1000000; ++j) {
v[i*p[j]] = true;
if(i % p[j] == 0) break;
}
}
}
public static int check(BigInteger k) {
if (k.equals(BigInteger.ONE)) return 1;
BigInteger a = BigInteger.valueOf((long)Math.sqrt(k.doubleValue()));
if (k.equals(a.multiply(a))) return 2;
a = a.add(BigInteger.ONE);
if (k.equals(a.multiply(a))) return 2;
BigInteger b = BigInteger.valueOf((long)Math.pow(k.doubleValue(), 1.0/3));
if (k.equals(b.multiply(b.multiply(b)))) return 3;
b = b.add(BigInteger.ONE);
if (k.equals(b.multiply(b.multiply(b)))) return 3;
return 1;
}
public static void main(String[] args) {
init();
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
BigInteger k[] = new BigInteger[5];
while(t-- != 0) {
for(int i = 0; i < 2; ++i) k[i] = sc.nextBigInteger();
long ans[] = new long[5];
for(int i = 0; i < 2; ++i) {
ans[i] = 1L;
for(int j = 0; j < cnt; ++j) {
if(k[i].mod(BigInteger.valueOf(p[j])) == BigInteger.ZERO) {
long num = 0;
while(k[i].mod(BigInteger.valueOf(p[j])) == BigInteger.ZERO) {
++num;
k[i] = k[i].divide(BigInteger.valueOf(p[j]));
}
ans[i] *= num;
}
}
}
k[2] = k[0].gcd(k[1]);
if(k[2].compareTo(BigInteger.valueOf(1000000)) > 0) {
int x = check(k[2]);
BigInteger g;
if(x == 1) g = k[2];
else if(x == 2) {
BigInteger tmp = BigInteger.valueOf((long)Math.sqrt(k[2].doubleValue()));
if(k[2].equals(tmp.multiply(tmp))) g = tmp;
else g = tmp.add(BigInteger.ONE);
} else {
BigInteger tmp = BigInteger.valueOf((long)Math.pow(k[2].doubleValue(), 1.0/3));
if(k[2].equals(tmp.multiply(tmp).multiply(tmp))) g = tmp;
else g = tmp.add(BigInteger.ONE);
}
for(int i = 0; i < 2; ++i) {
long num = 0;
while(k[i].mod(g) == BigInteger.ZERO) {
++num;
k[i] = k[i].divide(g);
}
ans[i] *= num;
if(k[i].compareTo(BigInteger.valueOf(1000000)) > 0) {
ans[i] *= check(k[i]);
}
}
}
System.out.println(ans[0] + " " + ans[1]);
}
sc.close();
}
}
对象用\(=\)进行比较是否相等是看地址。

Good Numbers(HDU5447+唯一分解)的更多相关文章
- K. Random Numbers(Gym 101466K + 线段树 + dfs序 + 快速幂 + 唯一分解)
题目链接:http://codeforces.com/gym/101466/problem/K 题目: 题意: 给你一棵有n个节点的树,根节点始终为0,有两种操作: 1.RAND:查询以u为根节点的子 ...
- HDU5447 Good Numbers
http://acm.hdu.edu.cn/showproblem.php?pid=5447 网上好像只找到java的题解,写完就发一下c++代码咯,顺便纪念一下+存个int128板子 做法可以看tj ...
- SPOJ:Divisors of factorial (hard) (唯一分解&分块优化)
Factorial numbers are getting big very soon, you'll have to compute the number of divisors of such h ...
- Min25 筛与 Powerful Numbers
Min25 筛与 Powerful Numbers Min25 筛 大喊一声 Min25 NB!!! 这是一个非常神奇的东西,用于求更加普遍的积性函数的前缀和. 比如我们要求 \(\sum_{i=1} ...
- Java 位运算2-LeetCode 201 Bitwise AND of Numbers Range
在Java位运算总结-leetcode题目博文中总结了Java提供的按位运算操作符,今天又碰到LeetCode中一道按位操作的题目 Given a range [m, n] where 0 <= ...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- [LeetCode] Add Two Numbers II 两个数字相加之二
You are given two linked lists representing two non-negative numbers. The most significant digit com ...
- [LeetCode] Maximum XOR of Two Numbers in an Array 数组中异或值最大的两个数字
Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231. Find the maximum re ...
- [LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...
随机推荐
- vue做页面按钮权限--分析
import * as types from '../mutation-types' const state = { btnCode: getBtnCode(), } const mutations ...
- [Tool] Give some magic ! 那些奇思妙想的 Chrome 插件
[ Reggy ] - 网站注册类自动填充临时信息,Magic! 但是对于非常规的网站无效.是什么意思呢? 就是说,它不是常规的 form 表单,而是使用 Js 操作数据,所以任何插件都无法自动识别. ...
- Windows版的OpenJDK下载(Red Hat 提供)
OpenJDK 在linux下安装很简单(yum安装),但是OpenJDK的官网没有为我们提供Windows版的安装软件.庆幸的是,Red Hat(红帽)为我们提供了windows版的安装软件. 下载 ...
- Ajax返回的数据存放到js数组
js定义数组比较简单: var array = [ ] ; 即可 今天记录一下 js 数组的常用规则: 1. b = [1,'da',"sdaf"]; //定义数组给数组添加默认 ...
- electron实现MessageBox
1.在渲染进程引用主进程模块 var remote = require('electron').remote; var dialog = remote.dialog; 2.实现一点简单的确定取消操作 ...
- 类的练习——python编程从入门到实践
9-1 餐馆:创建一个名为Restaurant的类,其方法__init__()设置两个属性:restaurant_name和cuisine_type.创建一个名为describe_restaurant ...
- day08——文件操作
day08 文件操作: open() :打开 f (文件句柄)= open("文件的路径(文件放的位置)",mode="操作文件的模式",encoding=&q ...
- stvd使用中的一些问题
1.stm8_interrupt_vector.c 会莫名其妙的自动出现,而且都是在项目目录下.进行如下操作 2.stvd编译时遇到no default placement for segment . ...
- Unity 代码提示符和UGUI屏幕自适应
[Header]("提示字符") Canvas Scaler 屏幕自适应
- server.port 在单元测试中,调用的类或者方法这个地方获取到的端口号就会变成-1
@Value("${server.port}") 本文链接:https://blog.csdn.net/weixin_38342534/article/details/886985 ...