P2872

传送门

首先

题目概括:题目让着求使所有牧场都联通.需要修建多长的路.

显然这是一道最小生成树板子题(推荐初学者做).

那我就说一下kruskal吧.

Kruskal算法是一种用来查找最小生成树的算法,由Joseph Kruskal在1956年发表。

用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪心算法的应用。

和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。------- 来自于百度百科

一、基本思路

kruskal利用了一种贪心的思想,先把每一条边按照边权排一下序,利用并查集维护每一个点.

跑kruskal的时候先判断两个点是不是在一个集合里边,如果在那就说明不用再去连边了.

然后合并的时候记录边权,在搞一个记录加的边数的计数器.

大家都知道一张图如果有\(n\)个节点,那么最少\(n-1\)条边就可以吧这张图搞联通了.

那么我们就可以等到计数器的计数记到\(n-1\) 的时候停止执行(已经得到正解).

然后因为这\(n-1\)条边把图连成一起,那么显然\(n - m\)条边就可以把图分成m个部分(很好想鸭).例题:P1195

二、代码

for (int i = 1; i <= cnt; i++) {
if (father(edge[i].x) != father(edge[i].y)) {//判断是不是在一个集合中
f++;
unionn(edge[i].x, edge[i].y);//合并
ans += edge[i].dis;//记录总权值
}
if (f == m) break;//如果做完了,那就停下啊.
}

此题代码及思路:

因为有一些边是一开始就有的,那么我们可以吧一开始就有的那些边都赋值成0,然后继续跑kruskal就好了.

因为给出的是坐标,那就先把坐标都存起来,然后把这些坐标依照欧几里得距离两两建边.

欧几里得距离公式:\(\sqrt{((x_{1}-x_{2})*(x_{1}-x_{2}) + (y_{1}-y_{2}) * (y_{1}-y_{2}))}\)

#include <bits/stdc++.h>

#define N 1000010
#define M 2010 using namespace std;
int fath[M], n, m; bool b[M];
double px[M], py[M];
struct node {//结构体存边.
int x, y;
double dis;
}edge[N << 2]; int read() {
int s = 0, f = 0; char ch = getchar();
while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
return f ? -s : s;
} int father(int x) {
if (x != fath[x]) fath[x] = father(fath[x]);//求是不是在一个集合里
return fath[x];
} void unionn(int x, int y) {
int fx = father(x), fy = father(y);//合并两个集合
fath[x] = fath[y];
} bool cmp(node p, node q) {
return p.dis < q.dis;//sort用品
} int main() {
n = read(), m = read();
int z = n + m;//原本就有的
for (int i = 1; i <= z; i++) fath[i] = i;
int cnt = 0;
for (int i = 1, x, y; i <= n; i++) {
x = read(), y = read();
px[i] = x, px[i] = y;//因为给出的是坐标,先把坐标存起来.
}
for (int i = 1; i <= n; i++) fath[i] = 1;
for (int i = n + 1, x, y; i <= n + m; i++) {
x = read(), y = read();
px[i] = x, py[i] = y;
}
for (int i = 1; i <= n + m; i++) {
for (int j = i + 1; j <= n + m; j++) {//开始存边
cnt++;
edge[cnt].x = i;
edge[cnt].y = j;
edge[cnt].dis = sqrt((px[i] - px[j]) * (px[i] - px[j]) + (py[i] - py[j]) * (py[i] - py[j]));
}
}
sort(edge + 1, edge + cnt + 1, cmp);//给边排一下序
int f = 0;
double ans = 0;
for (int i = 1; i <= cnt; i++) {//kruskal
if (father(edge[i].x) != father(edge[i].y)) {
f++;
unionn(edge[i].x, edge[i].y);
ans += edge[i].dis;
}
if (f == m) break;
}
printf("%.2lf", ans);
}

洛谷 P2872 【[USACO07DEC]道路建设Building Roads】的更多相关文章

  1. 洛谷——P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

  2. 洛谷 P2872 [USACO07DEC]道路建设Building Roads 题解

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

  3. 洛谷 P2872 [USACO07DEC]道路建设Building Roads

    题目描述 Farmer John had just acquired several new farms! He wants to connect the farms with roads so th ...

  4. bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...

  5. $P2872\ [USACO07DEC]道路建设Building\ Roads$

    \(problem\) 错的原因是\(RE\)(大雾 , 时刻谨记 \(N\) 个地方的话 保守开 \(\frac{N^2}{2}\) 大小. 因为是边. 边最多的情况即完全图 : $1+2+3+4. ...

  6. [USACO07DEC]道路建设Building Roads

    题目:洛谷P2872.POJ3625. 题目大意:给你n个点的坐标,有些点已经有边连通,现在要你连上剩下的所有点,求这些边的最小长度是多少(不包括原来的边). 解题思路:最小生成树,把所有边处理出来, ...

  7. 题解 P2872 【[USACO07DEC]道路建设Building Roads】

    这道题真的是令人窒息,Kruskal调了贼久一直RE,最后发现数组大小稍微少了那么一点点.(也就10倍吧..) 言归正传,根据本人的分析(以及算法标签的提示),这是一道求最小生成树的题目,当然要注意已 ...

  8. USACO 07DEC 道路建设(Building Roads)

    Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he ...

  9. 洛谷 P5019 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

随机推荐

  1. C#中datatable操作

    //1.新建datatable,为其添加自定义列DataTable dt = new DataTable();dt.Columns.AddRange(new DataColumn[] { new Da ...

  2. jsGrid使用入门

    jsGrid使用入门 原创蓝天上的一朵云 本文链接:https://blog.csdn.net/u012846041/article/details/82735811 jsGrid资源地址: http ...

  3. jQuery---jQ动画(普通,滑动,淡入淡出,自定义动画,停止动画),jQuery的事件,jQ事件的绑定/解绑,一次性事件,事件委托,事件冒泡,文档加载

    jQuery---jQ动画(普通,滑动,淡入淡出,自定义动画,停止动画),jQuery的事件,jQ事件的绑定/解绑,一次性事件,事件委托,事件冒泡,文档加载 一丶jQuery动画 show,hide, ...

  4. android中实现service动态更新UI界面

    案例:通过service向远程服务器发送请求,根据服务器返回的结果动态更新主程序UI界面,主程序可实时关闭或重启服务. 注册BroadcastReceiver 在主程序activity中注册一个Bro ...

  5. selenium自动化爬虫测试

    import time from selenium import webdriver from lxml import etree from selenium.webdriver import Act ...

  6. Bootstrap。

    bootstrap: 1.概念:前端开发框架. 2.快速入门:下载bootstrap.导入文件. 3.响应式布局: * 同一套页面可以兼容不同分辨率的设备. * 实现:依赖于栅格系统:将一行平均分成1 ...

  7. 如何提交多个具有相同name属性的表单

    有的时候我们会遇到这样一个需求,一个用户页面中有多条履历信息,每条履历信息对应数据表中的一条记录,用户可以进行添加或修改,点击保存时同时提交到了后台.有两个难点:1.前端怎样一次性提交多条履历信息?2 ...

  8. 【MySql】Update批量更新与批量更新多条记录的不同值实现方法

    mysql更新语句很简单,更新一条数据的某个字段,一般这样写: UPDATE mytable SET myfield = 'value' WHERE other_field = 'other_valu ...

  9. 服务器安装python3环境

    服务器安装python3环境 先安装相关包 yum install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel re ...

  10. 将python图片转为二进制文本的实例

    https://www.jb51.net/article/155342.htm 写在最前面: 我在研究机器学习的过程中,给的数据集是手写数字图片被处理后的由0,1表达的txt文件,今天写一写关于图片转 ...