确定用户价值是整个用户运营过程中极其重要的一环。传统的工作流程中,业务人员向数据部门提出数据需求,等待返回结果后再进行价值分析是主要的准备工作,但这个过程非常耗时。为了提高工作效率,业务人员经常会基于自己对用户的理解制定一系列的运营策略,但完成了运营活动后,比较难及时进行活动效果的跟进与评估,到了可以评估的时候又往往发现活动效果并不理想。

造成以上情况的主要原因就是业务人员认为的用户群体特征与用户实际的特征之间存在着一定的偏差,手动进行用户分析则耗时耗力,当有了客户数据洞察平台后,上述问题就全部迎刃而解了。

数据部门提前将基本的数据加工好,业务人员有需要的时候直接自主进行标签加工群组分析等一系列操作,省去了很多沟通成本,将更多的精力放在了运营策略的制定上,最终成功落地效果突出的运营活动。

如何将用户从一个整体拆分成特征明显的群体决定了运营的成败。行业内有很多成熟的用户价值分析方法,而这其中最为经典的实现模型就是 RFM 模型。在资源有限的情况下,RFM 模型可以让企业聚焦于更有价值的用户,带来事半功倍的效果。

关于 RFM 模型,这个名字很多同学都知道,但深究到执行层面,相信很多同学都是一知半解,本文将为大家详细介绍 RFM 模型在「袋鼠云客户数据洞察平台」内的落地实战,帮助您快速判断用户价值等级,真正实现数据赋能业务发展。

RFM 模型核心维度

首先,让我们先来了解一下什么是 RFM 模型。RFM 模型是做用户精细化运营的常用分析方法,可以直观看出用户的价值贡献。RFM 模型包含三个重要指标:最近一次消费频率(Recency)、消费频率(Frequency)、消费金额(Monetary)。下面通过具体例子介绍如何生成 RFM 模型来指导运营工作的推进。

在开始加工标签、生成模型之前,首先要完成业务场景的分析,根据业务场景对用户的行为进行分层后,再通过「客户数据洞察平台」创建相应的「最近一次消费频率」、「消费频率」、「消费金额」标签,随后根据这些标签生成想要的 RFM 模型。

下面我们以用户下单行为为例来看一下近30天有下单行为的用户价值。根据对业务场景的分析,我们需要完成以下这些标签的加工:

客户数据洞察平台中实现 RFM 模型

完成了业务场景的分析,接下来就可以在「客户数据洞察平台」完成标签的创建以及 RFM 模型的生成。

创建用户实体,并将订单表绑定至对应的用户实体下

下图展示了订单表绑定实体的过程,完成了绑定的实体则可以进行后续标签的加工。

根据订单表加工所需的衍生标签

通过前文的业务分析,我们需要以下5个衍生标签:近7天有消费行为、近15天有消费行为、近30天有消费行为、近30天消费频率、近30天消费金额水平。

其中,「近7天有消费行为」、「近15天有消费行为」、「近30天有消费行为」标签的加工方法类似。下图仅展示「近7天有消费行为」标签的加工规则:

下图为「近30天消费频率」标签的加工规则:

在加工标签的过程中,我们可以通过标签值分布功能来评估我们的分类标准是否合理,如出现了下图这种分布情况,则说明我们设置的「高」等级标签值的门槛过高,没有实例可以覆盖,此时我们需要整体调低分布区间,提高标签计算结果的利用率。

下图为「近30天消费金额水平」标签的加工规则:

根据加工好的衍生标签加工组合标签

「最近一次消费频率」标签是根据近7天有消费行为、近15天有消费行为、近30天有消费行为三个衍生标签而来的组合标签,下图为「最近一次消费频率」标签的加工规则:

以上,我们就完成了实现 RFM 模型所必要的三个核心标签

标签圈群,实现 RFM 模型

在创建 RFM 模型之前,让我们先对模型做一下拆解,看一下群体结果与业务是如何进行结合的。

在 RFM 模型中,我们需要的3个标签被分成了三个等级,对标签值进行自由组合,形成了27类人群,本文中选取其中的3类人群进行群组分析与洞察

了解了 RFM 模型如何使用之后,我们就可以在「袋鼠云客户数据洞察平台」将需要进一步分析的各个群组的用户正式筛选出来,进而对各个群体进行定向的更加具体的营销策略制定与执行。

袋鼠云客户数据洞察平台」提供了两种 RFM 模型落地的方式,一种是从27类人群中选取重点关注的群体分别建立群组;一种是使用平台提供的模型封装工具快速落地。

第一种方式将会节约更多的存储、计算资源,适合对模型、用户的理解与应用更加深刻的高级运营人员使用;第二种方式则可以更加方便快捷的查询各类不同价值等级的用户群体,更全面的洞察目标群体的突出特征,同时也需要花费更多的精力、更多的资源来关注一些低价值群体。

本文主要介绍第一种方式的配置方法,第二种方式感兴趣的同学可在「袋鼠云客户数据洞察平台」内自行探索。进入到群组分析内的标签圈群模块,设置好我们上方提到的群组1的圈群条件,如下图所示:

设置好群组规则后,开始进行圈群动作,平台会向你提供所有的群体实例信息,你可以将其保存为群组后后续实时关注群组变化,也可快速进行群组画像、显著性分析、群组对比等群组分析洞察。

总结

以上,就是 RFM 模型在「袋鼠云客户数据洞察平台」的实战演练。除了 RFM 模型,客户数据洞察平台也可以落地其他典型的用户分析模型,如 AARRR 模型、PLC 模型、AIPL 模型等。

在实际使用中,多模型组合分析也是重要的分析洞察内容,后续将陆续为大家呈现更多的模型加工与分析的实操内容,欢迎关注。

《数栈产品白皮书》:https://www.dtstack.com/resources/1004?src=szsm

《数据治理行业实践白皮书》下载地址:https://www.dtstack.com/resources/1001?src=szsm

想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szbky

同时,欢迎对大数据开源项目有兴趣的同学加入「袋鼠云开源框架钉钉技术qun」,交流最新开源技术信息,qun号码:30537511,项目地址:https://github.com/DTStack

理论+实操|一文掌握 RFM 模型在客户数据洞察平台内的落地实战的更多相关文章

  1. 使用ML.NET实现基于RFM模型的客户价值分析

    RFM模型 在众多的客户价值分析模型中,RFM模型是被广泛应用的,尤其在零售和企业服务领域堪称经典的分类手段.它的核心定义从基本的交易数据中来,借助恰当的聚类算法,反映出对客户较为直观的分类指示,对于 ...

  2. 【Social listening实操】作为一个合格的“增长黑客”,你还得重视外部数据的分析!

    本文转自知乎 作者:苏格兰折耳喵 ----------------------------------------------------- 在本文中,作者引出了"外部数据"这一概 ...

  3. 决策树算法的Python实现—基于金融场景实操

    决策树是最经常使用的数据挖掘算法,本次分享jacky带你深入浅出,走进决策树的世界 基本概念 决策树(Decision Tree) 它通过对训练样本的学习,并建立分类规则,然后依据分类规则,对新样本数 ...

  4. 数据挖掘应用案例:RFM模型分析与客户细分(转)

    正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模 ...

  5. 为啥我做的RFM模型被人说做错了,我错哪了?

    本文转自知乎 作者:接地气的陈老师 ————————————————————————————————————————————————————— 有同学问:“为啥我做的RFM模型被客户/业务部门批斗,说 ...

  6. 用户RFM模型及应用

    RMF含义 R(Recency)(用户粘性,越小越好):用户最近一次交易时间的间隔.R值越大,表示用户交易发生的日期越久,反之则表示用户交易发生的日期越近 F(Frequency)(用户忠诚度,越大越 ...

  7. 进程池与线程池基本使用、协程理论与实操、IO模型、前端、BS架构、HTTP协议与HTML前戏

    昨日内容回顾 GIL全局解释器锁 1.在python解释器中 才有GIL的存在(只与解释器有关) 2.GIL本质上其实也是一把互斥锁(并发变串行 牺牲效率保证安全) 3.GIL的存在 是由于Cpyth ...

  8. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  9. Java初学者作业——编写JAVA程序,要求输入技术部门5位员工的理论成绩和实操成绩,计算并输出各位员工的最终评测成绩。

    返回本章节 返回作业目录 需求说明: 某软件公司要求对技术部门的所有员工进行技能评测,技术评测分为两个部分:理论部分以及实操部分,最终评测成绩=理论成绩×0.4+实操成绩×0.6,要求输入技术部门5位 ...

  10. 网络编程:多进程实现TCP服务端并发、互斥锁代码实操、线程理论、创建线程的两种方式、线程的诸多特性、GIL全局解释器锁、验证GIL的存在

    目录 多进程实现TCP服务端并发 互斥锁代码实操 线程理论 创建线程的两种方式 线程的诸多特性 GIL全局解释器锁 验证GIL的存在 GIL与普通互斥锁 python多线程是否有用 死锁现象 多进程实 ...

随机推荐

  1. JdbcTemplate 自定义返回的结果集字段和实体类映射

    废话不多:抄袭代码 package com.webank.wedatasphere.qualitis.handler; import com.webank.wedatasphere.qualitis. ...

  2. 初始化参数之memory_target

    一.引言: Oracle 9i引入pga_aggregate_target,可以自动对PGA进行调整: Oracle 10g引入sga_target,可以自动对SGA进行调整: Oracle 11g则 ...

  3. 面试题-JVM性能调优

    前言 JVM性能调优是一个很大的话题,很多中小企业的业务规模受限,没有迫切的性能调优需求,但是如果不知道JVM相关的理论知识,写出来的代码或者配置的JVM参数不合理时,就会出现很严重的性能问题,到时候 ...

  4. study Rust-3【表达式和函数】

    1. Rust与优美的pascal很相似.但是这个表达式概念很有意思.见上图.[1.条件赋值语句:2.表达式返回值] 2.注意变量和隐藏变量的概念,这个也有创意. 3.函数在Rust无处不在.

  5. datasnap的监督功能【3】-TCP链接监督功能

    1.对于使用TCP/IP链接的客户端应用程序,是具有状态的.一直等到客户端完成服务请求后释放配置的资源.如何掉线了,那么服务器就是傻傻地等着,可能导致资源耗尽. 如何在服务端选择一个链接切断关闭之: ...

  6. 用99元买的服务器搭一套CI/CD系统

    故事的开始是这样的:无聊的时候在阿里云买了一个99/年的服务,上面部署了一个Git服务,用于托管自己无聊时写的一些代码,顺便也拿它做开发服务器.为了方便应用管理,起初用docker来管理和部署应用,后 ...

  7. 静态批处理/动态批处理/GPU Instancing /SRP Batcher的详细剖析

    静态批处理[1] 定义 标明为 Static 的静态物件,如果在使用相同材质球的条件下,在Build(项目打包)的时候Unity会自动地提取这些共享材质的静态模型的Vertex buffer和Inde ...

  8. svelte+vite+ts+melt-ui从0到1完整框架搭建

    框架太"重"了:通常一个小型项目只由少数几个简单页面构成,如果使用 Vue 或者 React 这些框架来研发的话,有点"大材小用"了.构建的产物中包含了不少框架 ...

  9. Java+Selenium+Junit实现web自动化demo

    1.新建maven工程 打开IDEA新建maven项目并引入相关依赖,步骤如下: 需要引入的依赖 <dependencies> <dependency> <groupId ...

  10. 康谋分享 | 数据隐私和匿名化:PIPL与GDPR下,如何确保数据合规?(二)

    在上期数据隐私和匿名化系列文章中,我们主要分享了<中国个人信息保护法>(PIPL)和<欧盟通用数据保护条例>(GDPR)在涵盖范围.定义.敏感信息等方面的异同点,今天,我们将重 ...