前几天,又一款非自回归的文字转语音的AI模型:MaskGCT,开放了源码,和同样非自回归的F5-TTS模型一样,MaskGCT模型也是基于10万小时数据集Emilia训练而来的,精通中英日韩法德6种语言的跨语种合成。数据集Emilia是全球最大且最为多样的高质量多语种语音数据集之一。

本次分享一下如何在本地部署MaskGCT项目,让您的显卡再次发烧。

安装基础依赖

首先确保本地已经安装好Python3.11环境,安装包可以去Python的官方下载:

python.org

随后克隆官方项目:

git clone https://github.com/open-mmlab/Amphion.git

官方提供了基于linux的安装shell脚本:

pip install setuptools ruamel.yaml tqdm
pip install tensorboard tensorboardX torch==2.0.1
pip install transformers===4.41.1
pip install -U encodec
pip install black==24.1.1
pip install oss2
sudo apt-get install espeak-ng
pip install phonemizer
pip install g2p_en
pip install accelerate==0.31.0
pip install funasr zhconv zhon modelscope
# pip install git+https://github.com/lhotse-speech/lhotse
pip install timm
pip install jieba cn2an
pip install unidecode
pip install -U cos-python-sdk-v5
pip install pypinyin
pip install jiwer
pip install omegaconf
pip install pyworld
pip install py3langid==0.2.2 LangSegment
pip install onnxruntime
pip install pyopenjtalk
pip install pykakasi
pip install -U openai-whisper

这里笔者为大家转换为适合Windows的requirements.txt依赖文件:

setuptools
ruamel.yaml
tqdm
transformers===4.41.1
encodec
black==24.1.1
oss2
phonemizer
g2p_en
accelerate==0.31.0
funasr
zhconv
zhon
modelscope
timm
jieba
cn2an
unidecode
cos-python-sdk-v5
pypinyin
jiwer
omegaconf
pyworld
py3langid==0.2.2
LangSegment
onnxruntime
pyopenjtalk
pykakasi
openai-whisper
json5

运行命令:

pip3 install -r requirements.txt

安装依赖即可。

安装onnxruntime-gpu:

pip3 install onnxruntime-gpu

安装torch三件套:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

Windows配置espeak-ng

由于MaskGCT项目后端依赖espeak软件,所以需要在本地进行配置,eSpeak 是一个紧凑的开源文本转语音 (TTS) 合成器,支持多种语言和口音 。它使用“共振峰合成”方法,允许以较小的体积提供多种语言 。语音清晰,可以高速使用,但不如基于人类语音录音的较大合成器自然流畅,而MaskGCT就是在espeak的合成基础上进行二次推理。

首先运行命令安装espeak:

winget install espeak

如果装不上,也可以下载安装包手动安装:

https://sourceforge.net/projects/espeak/files/espeak/espeak-1.48/setup_espeak-1.48.04.exe/download

随后下载espeak-ng安装包:

https://github.com/espeak-ng/espeak-ng/releases

下载后双击安装。

接着把 C:\Program Files\eSpeak NG\libespeak-ng.dll 拷贝到 C:\Program Files (x86)\eSpeak\command_line 目录。

然后把 libespeak-ng.dll 重命名为 espeak-ng.dll

最后把 C:\Program Files (x86)\eSpeak\command_line 目录配置到环境变量即可。

MaskGCT本地推理

都配置好之后,编写推理脚本 local_test.py:

from models.tts.maskgct.maskgct_utils import *
from huggingface_hub import hf_hub_download
import safetensors
import soundfile as sf
import os
import argparse
os.environ['HF_HOME'] = os.path.join(os.path.dirname(__file__), 'hf_download') print(os.path.join(os.path.dirname(__file__), 'hf_download')) parser = argparse.ArgumentParser(description="GPT-SoVITS api")
parser.add_argument("-p", "--prompt_text", type=str, default="说得好像您带我以来我考好过几次一样")
parser.add_argument("-a", "--audio", type=str, default="./说得好像您带我以来我考好过几次一样.wav")
parser.add_argument("-t", "--text", type=str, default="你好")
parser.add_argument("-l", "--language", type=str, default="zh")
parser.add_argument("-lt", "--target_language", type=str, default="zh")
args = parser.parse_args() if __name__ == "__main__": # download semantic codec ckpt
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT", filename="semantic_codec/model.safetensors") # download acoustic codec ckpt
codec_encoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model.safetensors")
codec_decoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors") # download t2s model ckpt
t2s_model_ckpt = hf_hub_download("amphion/MaskGCT", filename="t2s_model/model.safetensors") # download s2a model ckpt
s2a_1layer_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors")
s2a_full_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors") # build model
device = torch.device("cuda")
cfg_path = "./models/tts/maskgct/config/maskgct.json"
cfg = load_config(cfg_path)
# 1. build semantic model (w2v-bert-2.0)
semantic_model, semantic_mean, semantic_std = build_semantic_model(device)
# 2. build semantic codec
semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device)
# 3. build acoustic codec
codec_encoder, codec_decoder = build_acoustic_codec(cfg.model.acoustic_codec, device)
# 4. build t2s model
t2s_model = build_t2s_model(cfg.model.t2s_model, device)
# 5. build s2a model
s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device)
s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device) # load semantic codec
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
# load acoustic codec
safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt)
safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt)
# load t2s model
safetensors.torch.load_model(t2s_model, t2s_model_ckpt)
# load s2a model
safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt)
safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt) # inference
prompt_wav_path = args.audio
save_path = "output.wav"
prompt_text = args.prompt_text
target_text = args.text
# Specify the target duration (in seconds). If target_len = None, we use a simple rule to predict the target duration.
target_len = None maskgct_inference_pipeline = MaskGCT_Inference_Pipeline(
semantic_model,
semantic_codec,
codec_encoder,
codec_decoder,
t2s_model,
s2a_model_1layer,
s2a_model_full,
semantic_mean,
semantic_std,
device,
) recovered_audio = maskgct_inference_pipeline.maskgct_inference(
prompt_wav_path, prompt_text, target_text,args.language,args.target_language, target_len=target_len
)
sf.write(save_path, recovered_audio, 24000)

首次推理会在hf_download目录下载10个G的模型。

推理过程中,会占用11G的显存:

如果您的显存低于11G,那么务必打开Nvidia控制面板的系统内存回退策略,通过系统内存来补足显存:

如果愿意,也可以基于gradio写一个简单的webui界面,app.py:

import os
import gc
import re
import gradio as gr
import numpy as np
import subprocess
os.environ['HF_HOME'] = os.path.join(os.path.dirname(__file__), 'hf_download')
# 设置HF_ENDPOINT环境变量
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" reference_wavs = ["请选择参考音频或者自己上传"]
for name in os.listdir("./参考音频/"):
reference_wavs.append(name) def change_choices(): reference_wavs = ["请选择参考音频或者自己上传"] for name in os.listdir("./参考音频/"):
reference_wavs.append(name) return {"choices":reference_wavs, "__type__": "update"} def change_wav(audio_path): text = audio_path.replace(".wav","").replace(".mp3","").replace(".WAV","") # text = replace_speaker(text) return f"./参考音频/{audio_path}",text def do_cloth(gen_text_input,ref_audio_input,model_choice_text,model_choice_re,ref_text_input): cmd = fr'.\py311_cu118\python.exe local_test.py -t "{gen_text_input}" -p "{ref_text_input}" -a "{ref_audio_input}" -l {model_choice_re} -lt {model_choice_text} ' print(cmd)
res = subprocess.Popen(cmd)
res.wait() return "output.wav" with gr.Blocks() as app_demo:
gr.Markdown(
"""
项目地址:https://github.com/open-mmlab/Amphion/tree/main/models/tts/maskgct 整合包制作:刘悦的技术博客 https://space.bilibili.com/3031494
"""
)
gen_text_input = gr.Textbox(label="生成文本", lines=4)
model_choice_text = gr.Radio(
choices=["zh", "en"], label="生成文本语种", value="zh",interactive=True)
wavs_dropdown = gr.Dropdown(label="参考音频列表",choices=reference_wavs,value="选择参考音频或者自己上传",interactive=True)
refresh_button = gr.Button("刷新参考音频")
refresh_button.click(fn=change_choices, inputs=[], outputs=[wavs_dropdown])
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
ref_text_input = gr.Textbox(
label="Reference Text",
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
lines=2,
)
model_choice_re = gr.Radio(
choices=["zh", "en"], label="参考音频语种", value="zh",interactive=True
)
wavs_dropdown.change(change_wav,[wavs_dropdown],[ref_audio_input,ref_text_input])
generate_btn = gr.Button("Synthesize", variant="primary") audio_output = gr.Audio(label="Synthesized Audio") generate_btn.click(do_cloth,[gen_text_input,ref_audio_input,model_choice_text,model_choice_re,ref_text_input],[audio_output]) def main():
global app_demo
print(f"Starting app...")
app_demo.launch(inbrowser=True) if __name__ == "__main__":
main()

当然,别忘了安装gradio依赖:

pip3 install -U gradio

运行效果是这样的:

结语

MaskGCT模型的优势在于语气韵律层面十分突出,可以媲美真实语音,缺点也很明显,运行成本偏高,工程化层面优化不足。MaskGCT项目主页中已经有其商业版本模型的入口,据此推断,官方应该不会在开源版本中太过发力,最后奉上一键整合包,与众乡亲同飨:

MaskGCT一键包整合包 https://pan.quark.cn/s/e74726b84c78

MaskGCT,AI语音克隆大模型本地部署(Windows11),基于Python3.11,TTS,文字转语音的更多相关文章

  1. TogetherJS本地部署,基于websocket的网页即时视频、语音、文字聊天

    TogetherJS分为两大部分,一个是hu文件夹中的服务端:另外一个是TogetherJS文件夹中的Together.JS文件,包含了所有的网页文字.语音等操作. 需要预先安装Node.js,可以百 ...

  2. TTS 文字转语音 ekho

    1.源码下载 使用svn客户端,执行如下命令下载 svn co https://svn.code.sf.net/p/e-guidedog/code/ 2.官方网站查看说明 http://www.egu ...

  3. 【实战】yolov8 tensorrt模型加速部署

    [实战]yolov8 tensorrt模型加速部署 TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10.linux,在2023年已经更 ...

  4. 华为高级研究员谢凌曦:下一代AI将走向何方?盘古大模型探路之旅

    摘要:为了更深入理解千亿参数的盘古大模型,华为云社区采访到了华为云EI盘古团队高级研究员谢凌曦.谢博士以非常通俗的方式为我们娓娓道来了盘古大模型研发的"前世今生",以及它背后的艰难 ...

  5. 二手车价格预测 | 构建AI模型并部署Web应用 ⛵

    作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/t ...

  6. AI大模型学习了解

    # 百度文心 上线时间:2019年3月 官方介绍:https://wenxin.baidu.com/ 发布地点: 参考资料: 2600亿!全球最大中文单体模型鹏城-百度·文心发布 # 华为盘古 上线时 ...

  7. 实时中文语音克隆——开源项目MockingBird体验

    [引子] 在今年大型网络攻防演练前不久,笔者接到一个公司的座机号码来电,上来就问防守准备得怎么样了,哪里还有不足等.等等,这声音不认识,笔者第一反应就是蓝军(Red Team)来进行社会工程攻击,于是 ...

  8. Kubernetes 学习笔记(二):本地部署一个 kubernetes 集群

    前言 前面用到过的 minikube 只是一个单节点的 k8s 集群,这对于学习而言是不够的.我们需要有一个多节点集群,才能用到各种调度/监控功能.而且单节点只能是一个加引号的"集群&quo ...

  9. 三分钟快速上手TensorFlow 2.0 (下)——模型的部署 、大规模训练、加速

    前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算 ...

  10. DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍

    DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍 1. 概述 近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮. 这场风潮对数字世 ...

随机推荐

  1. impdp/expdp报错: ORA-39064: 无法写入日志文件 ORA-29285: 文件写入错误

    问题现象 Windows服务器导入/导出Oracle 11g数据库出现如下报错提示,输出的日志文件从报错位置往后不再输出. ORA-39064: 无法写入日志文件 ORA-29285: 文件写入错误 ...

  2. 面试官:说说volatile应用和实现原理?

    volatile 是并发编程中的重要关键字,它的名气甚至是可以与 synchronized.ReentrantLock 等齐名,也是属于并发编程五杰之一. 需要注意的是 volatile 并不能保证原 ...

  3. WM_ERASEBKGND

    WM_ERASEBKGND是在当窗口背景必须被擦除时 (例如,窗口的移动,窗口的大小的改变)才发送. 当窗口的一部分无效需要重绘时发送此消息. #define WM_ERASEBKGND 0x0014 ...

  4. 关于phpstudy小坑 经典数据库报错 1044

    经典数据库报错  1044   权限问题 一个很经典的问题 使用的集成环境的phpstudy ,  一直都挺好的  但是每次删除后不能创建同名的数据库   最后发现原来默认的只有一个库  在这个库下面 ...

  5. Coursera self-driving2, State Estimation and Localization Week3, GNSS IMU for pose estimation

    如何表示旋转?三种方法 1. rotation matrix 2. unit quaternions 四元数 3. Euler angles 4. compare 坐标系 ECIF - Earth-C ...

  6. 科技助力上亿用户隐私安全保护,合合信息两款产品再获CCIA PIA星级标识

    随着互联网技术的飞速发展,个人信息的收集.存储.使用和传输变得日益频繁,其泄露和滥用的风险也随之增加,个人信息保护已成为社会共同关注的热点议题.近期,"中国网络安全产业联盟(CCIA)数据安 ...

  7. DECL: 针对噪声时间序列的去噪感知对比学习《Denoising-Aware Contrastive Learning for Noisy Time Series》(时间序列、对比学习、去噪)

    今天是2024年9月12日,组会摸鱼,很久没看论文了,在摸鱼看代码,最近IJCAI 2024出来了,找了几篇论文看,首先这是第一篇. 论文:Denoising-Aware Contrastive Le ...

  8. 城市时空预测的统一数据管理和综合性能评估 [实验、分析和基准]《Unified Data Management and Comprehensive Performance Evaluation for Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark]》

    2023年11月1日,还有两个月,2023年就要结束了,希望在结束之前我能有所收获和进步,冲呀,老咸鱼. 论文:Unified Data Management and Comprehensive Pe ...

  9. CSS – display, visibility, opacity, transparent 的区别

    前言 要让一个元素"消失", 有 3 种做法. 它们有一点点的不同. 在实战时要清楚什么时候用什么哦. 例子说明 <div class="abc"> ...

  10. Spring —— bean实例化

    bean 实例化 bean本质上就是对象,创建bean使用构造方法完成(反射)      构造方法(常用)        静态工厂*        实例工厂*        FactoryBean(实 ...