Skewed Sorting
Description
Farmer John has 2^N (1 <= N <= 10) cows, each conveniently labeled
with paint on her flank with a number in the range 1..2^N. They are
standing in a line in some random order. The first cow in line is
cow_1; the second cow in line is cow_2; and so on (1 <= cow_i <=
2^N). Of course, cow_1 is unlikely to carry the painted label 1. He performs the following algorithm to put them in order. 1. If there is more than one cow, then partition the cows into
two equal-sized sub-groups. Sort the first sub-group using
this algorithm and then sort the second sub-group, also using
this algorithm. 2. Consider the current set of cows to be sorted as an equal-length
pair of (potentially huge) base 2^N numbers. If the second
number is smaller than the first one, then swap all the
elements of the second one with those elements of the first
one. The cows would like to know how much distance they cover while
moving around during this 'sorting' procedure. Given the initial configuration of the cows, process the list
according to the algorithm above and then print out: * the sum of the total distances traveled by all cows and * the final configuration of the cows after this 'sorting'
procedure. By way of example, consider this line of 2^3=8 cows: 8 5 2 3 4 7 1 6 First, Farmer John will sort each half of the line separately: 8 5 2 3 | 4 7 1 6 Since each half still has more than one cow, Farmer John will sort
those halves separately; starting with the 'first' half: 8 5 | 2 3 Partitioning again, FJ makes 8 | 5 and 2 | 3 each of which can be sorted by second rule, ultimately yielding: 5 | 8 and 2 | 3 (<--unchanged) The distance traveled by each cow during the first subgroup's sort
is 1, so total_distance_moved becomes 2. The second half is already
sorted, so the total_distance_moved stays at 2. The new configuration
of this sub-group is: 5 8 | 2 3 For step 2 of the algorithm on the subgroup above, we compare the
two sides lexicographically (5 8 vs. 2 3). Since the 2 comes before
5, we swap the two elements of the first half with the corresponding
elements of the second half, yielding: 2 3 5 8 Each of the four cows moved two spaces in this swap, contributing
a total of 8 moves, so total_distance_moved becomes 10. Consider the other half of the cows; we divide the list of four
into two sub-groups: 4 7 | 1 6 Each pair (4, 7) and (1, 6) is already sorted. Comparing (4 7) to (1 6), since 1 comes before 4, we must swap the
two sub-groups: 1 6 4 7 which contributes a total of 8 more moves, bringing total_distanced_move
to 18. After the operations above, the list looks like this (and it's time
for step 2 to be performed on the two groups of 4): 2 3 5 8 | 1 6 4 7 Since 1 comes before 2, we must swap the halves, this yielding this
configuration: 1 6 4 7 2 3 5 8 Since each of 8 cows moved four units, this contributes a total of
32 more moves, making total_distance_moved become 50 Therefore, the answer is 50 and 1 6 4 7 2 3 5 8.
Input
* Line 1: A single integer: N * Lines 2..2^N + 1: Line i+1 contains a single integer: cow_i
Output
* Line 1: One integer, the total distance traveled by all the cows * Lines 2..2^N + 1: Line i+1 will contain one integer: the ith cow in
the final configuration
3
8
5
2
3
4
7
1
6
50
1
6
4
7
2
3
5
8
#include<iostream>
#include<cstdio>
#include<algorithm>
const int maxn=1025;
int a[maxn],b[maxn];
int ans,k;
void a_array(int a[],int begin,int mid,int end,int b[])
{
k=0;
if(a[begin]>a[mid+1]){
ans+=(mid+1-begin)*(end-begin+1);
for(int i=mid+1;i<=end;i++)
b[k++]=a[i];
for(int i=begin;i<=mid;i++)
b[k++]=a[i];
}
else {
for(int i=begin;i<=mid;i++)
b[k++]=a[i];
for(int i=mid+1;i<=end;i++)
b[k++]=a[i];
}
for(int i=0;i<k;i++)
a[begin+i]=b[i];
}
void a_sort (int a[],int begin,int end,int b[])
{
int mid;
if(begin<end){
mid=(begin+end)/2;
a_sort(a,begin,mid,b);
a_sort(a, mid+1, end, b);
a_array(a, begin, mid, end, b);
}
}
int main ()
{
int n,t=1;
while(~scanf("%d",&n)){
ans=0;t=1;t<<=n;
for(int i=0;i<t;i++)
scanf("%d",&a[i]);
a_sort(a, 0, t-1, b);
printf("%d\n",ans);
for(int i=0;i<t;i++)
printf("%d\n",a[i]);
}
return 0;
}
Skewed Sorting的更多相关文章
- HDU Cow Sorting (树状数组)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2838 Cow Sorting Problem Description Sherlock's N (1 ...
- 1306. Sorting Algorithm 2016 12 30
1306. Sorting Algorithm Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description One of the f ...
- 算法:POJ1007 DNA sorting
这题比较简单,重点应该在如何减少循环次数. package practice; import java.io.BufferedInputStream; import java.util.Map; im ...
- U3D sorting layer, sort order, order in layer, layer深入辨析
1,layer是对游戏中所有物体的分类别划分,如UIlayer, waterlayer, 3DModelLayer, smallAssetsLayer, effectLayer等.将不同类的物体划分到 ...
- WebGrid with filtering, paging and sorting 【转】
WebGrid with filtering, paging and sorting by Jose M. Aguilar on April 24, 2012 in Web Development A ...
- ASP.NET MVC WebGrid – Performing true AJAX pagination and sorting 【转】
ASP.NET MVC WebGrid – Performing true AJAX pagination and sorting FEBRUARY 27, 2012 14 COMMENTS WebG ...
- poj 1007:DNA Sorting(水题,字符串逆序数排序)
DNA Sorting Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 80832 Accepted: 32533 Des ...
- ural 1252. Sorting the Tombstones
1252. Sorting the Tombstones Time limit: 1.0 secondMemory limit: 64 MB There is time to throw stones ...
- CF#335 Sorting Railway Cars
Sorting Railway Cars time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
随机推荐
- 4、Hibenrate中HQL的10中查询方式
二.具体事例如下: 2.0 编写如下sql语句 )); create sequence seq_teacher; insert into teacher values(seq_teacher.next ...
- 3、Spring的AOP详解和案例
AOP(Aspect Oriented Programming),即面向切面编程. 1.OOP回顾 在介绍AOP之前先来回顾一下大家都比较熟悉的OOP(Object Oriented Programm ...
- Java ZIP打包
File zipFile = IOUtil.createTempFile("zip"); ZipOutputStream zipout = new ZipOutputStream( ...
- MVC view视图获取Html.RenderAction方式带来的参数
通过Html.RenderAction这种方式传递的参数,在view视图中获取要使用viewContext上下文来获取:Html.ViewContext.RouteData.Values[" ...
- 灰色关联度Matlab代码
load x.txt %把原始数据存放在纯文本文件x.txt中,其中把数据的"替换替换成. for i=1:40x(i,:)=x(i,:)/x(i,1); %标准化数据end data=x; ...
- Core Animation中的关键帧动画
键帧动画就是在动画控制过程中开发者指定主要的动画状态,至于各个状态间动画如何进行则由系统自动运算补充(每两个关键帧之间系统形成的动画称为“补间动画”),这种动画的好处就是开发者不用逐个控制每个动画帧, ...
- phabricator 搭建
os:debian7 Installation Guide :https://secure.phabricator.com/book/phabricator/ $ cd /data # 安装目录 da ...
- 八、oracle 分页
oracle的分页一共有三种方式 方法一 根据rowid来分 SELECT * FROM EMP WHERE ROWID IN (SELECT RID FROM (SELECT ROWNUM RN, ...
- 《Windows驱动开发技术详解》之Windows内存管理
虚拟内存地址 Windows所有的程序(Ring0和Ring3层)可以操作的都是虚拟内存.有一部分单元会和物理内存对应起来,但并非一一对应,多个虚拟内存页可以映射同一个物理内存页.还有一部分单元会被映 ...
- 开源日志系统比较:scribe、chukwa、kafka、flume
1. 背景介绍 许多公司的平台每天会产生大量的日志(一般为流式数据,如,搜索引擎的pv,查询等),处理这些日志需要特定的日志系统,一般而言,这些系统需要具有以下特征: (1) 构建应用系统和分析系统的 ...