题目链接:http://poj.org/problem?id=3660

Description

N ( ≤ N ≤ ) cows, conveniently numbered ..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B ( ≤ A ≤ N;  ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M ( ≤ M ≤ ,) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

Input

* Line : Two space-separated integers: N and M
* Lines ..M+: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B Output * Line : A single integer representing the number of cows whose ranks can be determined
  Sample Input Sample Output Source
USACO January Silver

题目大意:有N头牛,每头牛都有个特技。有M场比赛,比赛形式是A B 意味着牛A一定能赢牛B,问在M场比赛后,有几头牛的名次是确定的(不互相矛盾)?

方法:这是最短路练习,但是以最短路的形式无法求出来,看了一下题解发现是最短路的floyd算法写的,这个算法的时间复杂度为O(n3),自己百度了一下这个算法,再求每个点的出度入度的和,如果等于n(算上自己),就能确定

 #include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<math.h>
#include<queue>
using namespace std;
#define INF 0x3f3f3f3f
#define ll long long
#define met(a,b) memset(a,b,sizeof(a))
#define N 500
int a[N][N],G[N][N];
int main()
{
int n,m,e,v;
while(scanf("%d %d",&n,&m)!=EOF)
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
a[i][j]=i==j?:;
}
for(int i=;i<m;i++)
{
scanf("%d %d",&e,&v);
a[e][v]=;
}
///floyd算法 五行代码 三层for循环 时间复杂度为O(n3)
for(int k=;k<=n;k++)
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
if(a[i][j]||(a[i][k] && a[k][j]))
a[i][j]=;
}
}
}
///求每个点的出度入度之和
int ans=,sum=;
for(int i=;i<=n;i++)
{
sum=;
for(int j=;j<=n;j++)
{
if(a[i][j] || a[j][i])
sum++;
}
if(sum==n)
ans++;
}
printf("%d\n",ans);
}
return ;
}
/*
5 5
4 3
4 2
3 2
1 2
2 5
*/

(poj 3660) Cow Contest (floyd算法+传递闭包)的更多相关文章

  1. ACM: POJ 3660 Cow Contest - Floyd算法

    链接 Cow Contest Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Descri ...

  2. POJ 3660 Cow Contest (Floyd)

    题目链接:http://poj.org/problem?id=3660 题意是给你n头牛,给你m条关系,每条关系是a牛比b牛厉害,问可以确定多少头牛的排名. 要是a比b厉害,a到b上就建一条有向边.. ...

  3. POJ 3660 Cow Contest / HUST 1037 Cow Contest / HRBUST 1018 Cow Contest(图论,传递闭包)

    POJ 3660 Cow Contest / HUST 1037 Cow Contest / HRBUST 1018 Cow Contest(图论,传递闭包) Description N (1 ≤ N ...

  4. POJ 3660 Cow Contest 传递闭包+Floyd

    原题链接:http://poj.org/problem?id=3660 Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  5. POJ 3660 Cow Contest

    题目链接:http://poj.org/problem?id=3660 Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  6. POJ 3660—— Cow Contest——————【Floyd传递闭包】

    Cow Contest Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit  ...

  7. POJ 3660 Cow Contest(传递闭包floyed算法)

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5989   Accepted: 3234 Descr ...

  8. POJ 3660 Cow Contest(Floyd求传递闭包(可达矩阵))

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16341   Accepted: 9146 Desc ...

  9. POJ - 3660 Cow Contest 传递闭包floyed算法

    Cow Contest POJ - 3660 :http://poj.org/problem?id=3660   参考:https://www.cnblogs.com/kuangbin/p/31408 ...

  10. poj 3660 Cow Contest(传递闭包 Floyd)

    链接:poj 3660 题意:给定n头牛,以及某些牛之间的强弱关系.按强弱排序.求能确定名次的牛的数量 思路:对于某头牛,若比它强和比它弱的牛的数量为 n-1,则他的名次能够确定 #include&l ...

随机推荐

  1. [转]Publishing and Running ASP.NET Core Applications with IIS

    本文转自:https://weblog.west-wind.com/posts/2016/Jun/06/Publishing-and-Running-ASPNET-Core-Applications- ...

  2. hdu_1495_非常可乐(bfs模拟)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1495 题意:不解释 题解:BFS模拟,不过要细心,把所有情况都列举出来,开一个数组记录状态,代码有点长 ...

  3. Android Studio的使用(十四)--如何查看资源或者函数在哪些类中被引用

    1.我们都知道在Eclipse中可以通过快捷键Ctrl+Shift+G开快速搜索方法.类.资源都在那个类中被使用了. 2.在Android Studio中则使用快捷键Ctrl+G.

  4. Cake

    Cake Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submissi ...

  5. Java&&As3.0 中的final 关键字

    Java和AS3.0关键字final有“这是无法改变的”或者“终态的”含义,它可以修饰非抽象类.非抽象类成员方法和变量.你可能出于两种理解而需要阻止改变:设计或效率.   可以修饰的对象:   fin ...

  6. 推翻自己和过往,重学自定义View

    http://blog.csdn.net/lfdfhl/article/details/51671038 深入探讨Android异步精髓Handler 站在源码的肩膀上全解Scroller工作机制 A ...

  7. FileSystemXmlApplicationContext方法的绝对路径问题

    public AgentServer(Socket c,String confDir) { this.client = c; ApplicationContext ac = new FileSyste ...

  8. HDU 2844 Coins 背包问题 + 二进制优化

    题目大意:某个人有n种硬币,每种硬币价值为v,数量为c,问在总价值不超过m的条件下,最多有多少种组合方式. 题目思路: 1.对于某种硬币 如果v*c 大于 m,就意味着无论取多少枚硬币,只要总价值不大 ...

  9. ACE_Get_Opt解析命令行

    ACE_Get_Opt是一种解析命令行参数选项的迭代器. 1:构造方法 ACE_Get_Opt需要引用头文件,#include "ace/Get_Opt.h". ACE_Get_O ...

  10. Android中用友盟实现QQ的第三方登录

    //首先应该去友盟的官网注册你的账号,创建一个应用,获得它的APPkey,也可以用它的API上的appkey,下载SDK,下面根据API文档一步步实现就行了. //下面是友盟的APi文档 1.  产品 ...