【历史背景】

霍纳的方法是中国南宋时期的数学家秦九韶表述求解一元高次多项式的值的算法——正负开方术。

它也能够配合牛顿法用来求解一元高次多项式的根。在西方被称作霍纳算法(Horner
algorithm或Horner scheme)。是以英国数学家威廉·乔治·霍纳命名的。

【原理解释】

设有n+1项的n次函数

f(x)=anxn+ an-1xn-1+an-2xn-2+ an-3xn-3+…… a2x2+a1x+
a0

将前n项提取公因子x,得

f(x)=(anxn-1+ an-1xn-2+an-2xn-3+…… a2x+a1)+ a0

再将括号内的前n-1项提取公因子x。得

f(x)=((anxn-2+ an-1xn-3+an-2xn-4+…… a2)x+ a1)x+a0

如此重复提取公因子x,最后将函数化为

f(x)=(((anx+ an-1)x+ an-2)x+……+a1)x+a0

令f1= anx+ an-1

f2=f1x+ an-2

f3=f2x+ an-3

。。。

fn=fn-1x+ a0    则fn即为所求

【代码演示样例】

AlgorithmCalculatorService.java

       /**
* 获取系数集合
* @param N 多项式个数
* @return 系数集合
*/
public static ArrayList<Double> getCoefficientList(Integer N) {
ArrayList<Double> AnList = new ArrayList<Double>();
//随机生成N个0到10之间的系数
Random random = new Random();
while(N > 0) {
AnList.add((double) (Math.round(random.nextFloat()*100)/10.0)); //随机一个[0-10]之间的一位小数
N--;
}
return AnList;
} /**
* 运行传统算法并获取结果
* 模板为 An*X^n + An-1*X^n-1 + ... A1X + A0
* @param AnList 系数集合
* @param X X值
* @return 计算结果
*/
public static String getResultByTrandition(ArrayList<Double> AnList, Float X) {
int N = AnList.size() - 1;
Double result = 0D;
long start = System.currentTimeMillis(); //获取当前时间。单位为毫秒
for(Double An : AnList) {//遍历系数集合,每一次循环计算出一项的值。并相加
Double Xn = 1D;
int i = 0;
while(i<N) {
Xn = Xn*X;
i++;
}
N--;
result = result + An*Xn;
}
long end = System.currentTimeMillis();
String resultMsg = "计算结果: " + result + " ,耗时为:" + (end - start) + "毫秒! ";
return resultMsg;
} /**
* 运行秦九韶算法并获取结果
* 模板为((...(An*X + An-1)X + An-2)X + ... + A1)X + A0
* @param AnList 系数集合
* @return 计算结果
*/
@SuppressWarnings("unchecked")
public static String getResultByHorner(ArrayList<Double> anList, Float X) {
ArrayList<Double> AnList = (ArrayList<Double>) anList.clone();
Double V = (double)AnList.get(0);
AnList.remove(0);
long start = System.currentTimeMillis(); //获取当前时间,单位为毫秒
for(Double An : AnList) {
V = X*V + An;
}
long end = System.currentTimeMillis();
String resultMsg = "计算结果: " + V + " 。耗时为:" + (end - start) + "毫秒!";
return resultMsg;
} public static void main(String[] args) {
ArrayList<Double> anlist = getCoefficientList(5);
String msg1 = getResultByTrandition(anlist, 3F);
System.out.println("传统算法: " + msg1);
String msg2 = getResultByHorner(anlist, 3F);
System.out.println("九韶算法: " + msg2);
}

【执行结果】

传统算法: 计算结果: 8.992778799971419E137 。耗时为:20毫秒。

九韶算法: 计算结果: 8.992778799971422E137 。耗时为:0毫秒!

【结果分析】

当数据量较大时,在耗时方面秦九韶算法相比传统算法占领明显优势!

版权声明:本文博客原创文章。博客,未经同意,不得转载。

算法 《霍纳的方法java实践》的更多相关文章

  1. 算法 《秦九韶算法java实践》

    [历史背景] 秦九韶算法是中国南宋时期的数学家秦九韶表述求解一元高次多项式的值的算法--正负开方术.它也能够配合牛顿法用来求解一元高次多项式的根.在西方被称作霍纳算法(Horner algorithm ...

  2. Redis与Java - 实践

    Redis与Java - 实践 标签 : Java与NoSQL Transaction Redis事务(transaction)是一组命令的集合,同命令一样也是Redis的最小执行单位, Redis保 ...

  3. 霍纳法则(Horner's rule)

    卡在hdu 1402 的高精度乘法了,要用FFT(快速傅里叶变换),然后看到了这个霍纳法则,顺便就写下来了. 霍纳法则:求多项式值的一个快速算法. 简单介绍: 假设有n+2个数 , a0,a1,a2, ...

  4. 霍纳法则(Horner Rule)介绍及C语言实现

    参考自:http://flynoi.blog.hexun.com/31272178_d.html 霍纳法则简介 假设有n+2个实数a0,a1,-,an,和x的序列,要对多项式Pn(x)= anxn+a ...

  5. Canny边缘检测算法(基于OpenCV的Java实现)

    目录 Canny边缘检测算法(基于OpenCV的Java实现) 绪论 Canny边缘检测算法的发展历史 Canny边缘检测算法的处理流程 用高斯滤波器平滑图像 彩色RGB图像转换为灰度图像 一维,二维 ...

  6. 算法竞赛中的常用JAVA API:PriorityQueue(优先队列)(转载)

    算法竞赛中的常用JAVA API:PriorityQueue(优先队列) PriorityQueue 翻译过来就是优先队列,本质是一个堆, 默认情况下堆顶每次都保留最小值,每插入一个元素,仍动态维护堆 ...

  7. 算法竞赛中的常用JAVA API :HashSet 和 TreeSet(转载)

    算法竞赛中的常用JAVA API :HashSet 和 TreeSet set set容器的特点是不包含重复元素,也就是说自动去重. HashSet HashSet基于哈希表实现,无序. add(E ...

  8. 8.算法竞赛中的常用JAVA API :Calendar日期类

    8.算法竞赛中的常用JAVA API :Calendar日期类 摘要 在蓝桥杯中有关于日期计算的问题,正好java中的Date类和Calendar类提供了对日期处理的一些方法.Date类大部分方法已经 ...

  9. 7.算法竞赛中的常用JAVA API :String 、StringBuilder、StringBuffer常用方法和区别(转载)

    7.算法竞赛中的常用JAVA API :String .StringBuilder.StringBuffer常用方法和区别 摘要 本文将介绍String.StringBuilder类的常用方法. 在j ...

随机推荐

  1. python六核心编程——条件和循环

    1.if声明 单 if 通过使用布尔运算符的声明 and , or 和 not. if-elif-else. elif即else if if expression1:      expr1_true_ ...

  2. linux LNMP自动安装脚本

    #!/bin/bashsoft_dir="/home/soft"config_dir="/home/config"httpd="httpd-2.0.5 ...

  3. 【译】ASP.NET MVC 5 教程 - 10:添加验证

    原文:[译]ASP.NET MVC 5 教程 - 10:添加验证 在本节中,我们将为Movie模型添加验证逻辑,并确认验证规则在用户试图使用程序创建和编辑电影时有效. DRY 原则 ASP.NET M ...

  4. Python数据结构-元祖

    print()) print() #等价于: print('Tom is %d'%(5))

  5. ipconfig /flushdns 清除系统DNS缓存

    1.ipconfig /flushdns的作用 ipconfig /flushdns 这是清除DNS缓存用的. 当訪问一个站点时系统将从DNS缓存中读取该域名所相应的IP地址,当查找不到时就会到系统中 ...

  6. windows phone 页面导航(6)

    原文:windows phone 页面导航(6) 页面导航的例子我们使用的是两个页面,从第一个页面(MainPage)导航到第二个页面(SecondPage),然后可以从第二个页面导航到第一个页面 , ...

  7. hdu1869六度分离,spfa实现求最短路

    就是给一个图.假设随意两点之间的距离都不超过7则输出Yes,否则 输出No. 因为之前没写过spfa,无聊的试了一下. 大概说下我对spfa实现的理解. 因为它是bellmanford的优化. 所以之 ...

  8. javascript获取当前url中的參数

    javascript获取当前页面url中的參数能够使用location的search方法,获取到的是url中?后面的部分,比如http:localhost:8080/Manager/index.jsp ...

  9. hdu 4268 Alice and Bob(multiset|段树)

    Alice and Bob Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  10. enumerateObjectsUsingBlock、enumerateObjectsWithOptions、enumerateObjectsAtIndexes、makeObjectsPerfor使用

    OC至 NSArray它提供了一个方便的遍历block,以下具体说明 第一.enumerateObjectsUsingBlock NSArray *array=@[@"aa",@& ...