题意:给定一棵n个节点的树,然后在给定m条边,去掉m条边中的一条和原树中的一条边,使得树至少分为两部分,问有多少种方案。

神题,一点也想不到做法,

首先要分析出加入一条边之后会形成环,形成环的话,如果去掉该边和环上面没有被其他环覆盖的边,那么便分为两部分了。

这样只需要记录每条边被环覆盖了几次即可,

用dp[u]表示u点的父边被覆盖了几次。

每次新加进来一条边(a,b) dp[a] ++ ,dp[b] ++ , dp[lca(a,b)] -= 2;

所有边处理完之后,遍历一边此树,同时转移状态 dp[u] += dp[v];

#define maxn 100005

struct node
{
int v,next;
};
node e[maxn * ];
int cnt ;
int head[maxn * ];
int num ;
int E[maxn * + ],L[maxn * + ],R[maxn * + ];
int f[maxn * + ][];
int dp[maxn];
void init()
{
cnt = ;
memset(head,-,sizeof(head));
}
void add(int u ,int v)
{
e[cnt].v = v ;
e[cnt].next = head[u];
head[u] = cnt ++ ;
e[cnt].v = u;
e[cnt].next = head[v] ;
head[v] = cnt ++ ;
return ;
}
void dfs(int u ,int fa,int dep)
{
E[++num] = u , L[num] = dep , R[u] = num;
for(int i = head[u] ;i != -; i = e[i].next)
if(e[i].v != fa)
{
int v = e[i].v;
dfs(v, u, dep + );
E[++num] = u , L[num] = dep;
}
return;
}
void initRMQ()
{
for(int i = ; i <= num ;i ++ ) f[i][] = i;
for(int j = ; (<<j) <= num ; j++ )
for(int i = ; i + (<<j) - <= num; i ++ )
if(L[f[i][j-]] < L[f[i+(<<(j-))][j-]]) //ps:注意下标
f[i][j] = f[i][j-];
else f[i][j] = f[i+(<<(j-))][j-];
}
int lca(int a ,int b)
{
a = R[a] , b = R[b];
if(a>b) swap(a,b);
int k = (log(1.0 + b - a )/log(2.0));
if(L[f[a][k]] < L[f[b-(<<k)+][k]] )
return E[f[a][k]];
else return E[f[b-(<<k)+][k]];
}
void dfs(int u,int fa)
{
for(int i = head[u] ; i != - ; i =e[i].next)
if(e[i].v != fa)
{
int v = e[i].v;
dfs(v,u);
dp[u] += dp[v];
}
return ;
}
int main()
{
int n,m;
int u,v;
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
for(int i = ; i < n - ; i ++ )
{
scanf("%d%d",&u,&v);
add(u,v);
}
num = ;
memset(R,,sizeof(R));
dfs(,,);
initRMQ();
memset(dp,,sizeof(dp));
for(int i = ; i < m ; i ++ )
{
scanf("%d%d",&u,&v);
dp[u] ++ ;
dp[v] ++ ;
dp[lca(u,v)] -= ;
}
dfs(,);
int sum ;
sum = ;
for(int i = ;i <= n ; i++ ) // ps:1为根不要选。
{
if(dp[i] == )
sum ++;
else if(dp[i] == )
sum += m;
}
printf("%d\n",sum);
}
return ;
} /*
好题:
离线LCA + 树形DP 分析:加进来一条边(a,b),会形成一条环 a - lca(a,b) - b
如果去掉(a,b)和没有被其他环覆盖的边,那么就能把树分成两部分。
只要记录dp[u]表示u的负边被环覆盖了几次
对于新加进来的一条边(a,b) dp[a] ++ , dp[b] ++ , dp[lca(a,b)] -= 2;///
这样处理为完所有新加进来的边之后,在dfs一边,跑完状态转移:dp[u] += dp[v];
这里就可以把每条环上的边都依次加1,并且因为lca(a,b)的父边不再环上,且已经提前减去了2
这样转移正好可以把减掉的2消去。 注意:这里把lca离线处理成rmq,只需要O(n)的遍历和O(nlogn)的预处理即可。 ST表 并且这里以1为根,后面的状态转移也要以1为根,否则lca就白算了。 */

poj3417

poj3417 Network 树形Dp+LCA的更多相关文章

  1. SGU 149. Computer Network( 树形dp )

    题目大意:给N个点,求每个点的与其他点距离最大值 很经典的树形dp...很久前就想写来着...看了陈老师的code才会的...mx[x][0], mx[x][1]分别表示x点子树里最长的2个距离, d ...

  2. hdu_5293_Tree chain problem(DFS序+树形DP+LCA)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5293 被这题打蹦了,看着题解写的,很是爆炸,确实想不到,我用的DFS序+LCA+树形DP,当然也可以写 ...

  3. Uva LA 3902 - Network 树形DP 难度: 0

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  4. poj 3417 树形dp+LCA

    思路:我以前一直喜欢用根号n分段的LCA.在这题上挂了,第一次发现这样的LCA被卡.果断改用Tarjan离线算法求LCA. 当前节点为u,其子节点为v.那么: 当以v根的子树中含有连接子树以外点的边数 ...

  5. poj3417 Network 树上差分+LCA

    题目传送门 题目大意:给出一棵树,再给出m条非树边,先割掉一条树边,再割掉一条非树边,问有几种割法,使图变成两部分. 思路:每一条 非树边会和一部分的树边形成一个环,分三种情况: 对于那些没有形成环的 ...

  6. POJ 3728 The merchant (树形DP+LCA)

    题目:https://vjudge.net/contest/323605#problem/E 题意:一棵n个点的树,然后有m个查询,每次查询找(u->v)路径上的两个数,a[i],a[j],(i ...

  7. Codeforces Round #343 (Div. 2) E. Famil Door and Roads (树形dp,lca)

    Famil Door's City map looks like a tree (undirected connected acyclic graph) so other people call it ...

  8. HDU4008 Parent and son(树形DP LCA)

    先记录以1为根时每个节点子树儿子节点的最大与次小值,询问x, y时,先判断x在不在y的子树范围内,若不在,结果为y的儿子结点,后继的最小值. 若x在y的子树范围内,若y儿子最小值是x的前驱,从次小值与 ...

  9. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

随机推荐

  1. ASP.NET中的ExecuteNonQuery()方法的用法

    下面我将详细讲解在机房收费系统D层中如何对数据库的增加.删除.修改,最后再来总结一下 ExecuteNonQuery(),ExecuteScalar(),ExecuteReader的用法: 一.增.删 ...

  2. iOS开展-Xcode技巧总结(持续更新)

    1. <LLDB调试命令初探> 2. <Xcode LLDB Debug教程> 3. <iOS开发准备篇-(5)Xcode调试技巧_1> 4. <iOS开发准 ...

  3. JSF教程(9)——生命周期之Process Validations Phase

    在这个过程其中JSF的实现者使用processValidators方法处理全部在tree中的组件中注冊的验证器.验证的过程就是通过每一个组件已有的规则对其已经保存的值进行校验,同一时候也对输入的值进行 ...

  4. [Windows Phone] 地图覆叠层控制项(MapOverlay )

    原文:[Windows Phone] 地图覆叠层控制项(MapOverlay ) 前言 当使用地图时,我们可能需要定位一些座标图示或是绘制一些文字线条,这时可以在地图上加上覆叠层进行绘制,在 Wind ...

  5. POJ1274 The Perfect Stall【二部图最大匹配】

    主题链接: id=1274">http://poj.org/problem? id=1274 题目大意: 有N头奶牛(编号1~N)和M个牛棚(编号1~M). 每头牛仅仅可产一次奶.每一 ...

  6. Javascript设计模式系列三

    继承,一个类或对象继承另一个类或对象的三种方法.类式继承.原型式继承.掺元类. 一.类式继承,原型链.Extend函数. <script type="text/javascript&q ...

  7. Shrio登陆验证实例详细解读(转)

    摘要:本文采用了Spring+SpringMVC+Mybatis+Shiro+Msql来写了一个登陆验证的实例,下面来看看过程吧!整个工程基于Mavevn来创建,运行环境为JDK1.6+WIN7+to ...

  8. 为什么Redis比Memcached易

    GitHub版本号地址: https://github.com/cncounter/translation/blob/master/tiemao_2014/Redis_beats_Memcached/ ...

  9. 【ThinkingInC++】53、构造函数,析构函数,全局变量

    /** * 图书:[ThinkingInC++] * 特征:构造函数,析构函数,全局变量 * 时刻:2014年9一个月17日本18:07:43 * 笔者:cutter_point */ #includ ...

  10. node.js基础:数据存储

    无服务器的数据存储 内存存储 var http = require('http'); var count = 0; //服务器访问次数存储在内存中 http.createServer(function ...