关于LeetCode的Largest Rectangle in Histogram的低级解法
在某篇博客见到的Largest Rectangle in Histogram的题目,感觉蛮好玩的,于是想呀想呀,怎么求解呢?
还是先把题目贴上来吧
题目写的很直观,就是找直方图的最大矩形面积,不知道是受之前的trie tree影响怎么的,感觉树这玩意还真有用,于是就思考呀,还真别说,真想出一种方式,好吧,其实是入了一个大坑,也无妨,记录下来,好歹也是思路历程.....
大概思路这样的:
每次寻找直方图的最小值,记录此时以该最小值,和以其为高度的矩形面积,再将直方图以该最小值为界限,将直方图分成若干份,按照同样思路对每个子直方图继续求解,这样如果把每个直方图作为节点的话,其实也形成了一棵树,不过这树没啥价值,因为本题并不关心得到最大矩形的路径,只要求面积即可,是时候献丑了,代码贴上:
#include <vector>
#include <list>
#include <iostream>
#include <stack>
using namespace std;
class LRTreeNode
{
private:
int getMin()
{
if (right-left == 0)
{
return 0;
}
int min = (*heights)[left];
for (int i=left;i<right;i++)
{
min = (*heights)[i] > min ? min : (*heights)[i];
}
return min;
}
void getMaxArea()
{
maxArea = bottom*(right-left);
}
public:
int left, right;
int bottom;
int min;
int maxArea;
static vector<int>* heights;
vector<LRTreeNode*> lrnv;
LRTreeNode(int bottom,int left,int right)
{
this->left = left;
this->right = right;
this->bottom=getMin()+bottom;
this->min = getMin();
getMaxArea();
}
vector<LRTreeNode*>* genChildren()
{
int left2=left, right2=left;
for (int i = left; i < right; i++)
{
(*heights)[i] -= min; if ((*heights)[i] == 0 )
{
if (right2-left2 != 0)
{
lrnv.push_back(new LRTreeNode(bottom,left2,right2));
}
left2 = i+1;
right2 = i+1;
}
else
{
right2++;
}
}
if (right2 - left2 != 0)
{
lrnv.push_back(new LRTreeNode(bottom, left2, right2));
}
return &lrnv;
}
};
vector<int>* LRTreeNode::heights = NULL;
class LRTree
{
private:
LRTreeNode root;
public:
LRTree(vector<int>& heights) :root(0,0,heights.size())
{ }
int getMaxArea()
{
int max = root.maxArea;
list<LRTreeNode*> st;
vector<LRTreeNode*>* t = root.genChildren();
LRTreeNode* stt;
for (int i = 0; i < t->size(); i++)
{
st.push_back((*t)[i]);
max = max >(*t)[i]->maxArea ? max : (*t)[i]->maxArea;
}
while (st.empty() == false)
{
stt = st.back();
t = stt->genChildren();
st.pop_back();
for (int i = 0; i < t->size(); i++)
{
st.push_back((*t)[i]);
max = max > (*t)[i]->maxArea ? max : (*t)[i]->maxArea;
}
delete stt;
}
return max;
}
}; class Solution {
public:
int largestRectangleArea(vector<int>& heights);
};
int Solution::largestRectangleArea(vector<int>& heights)
{
LRTreeNode::heights = &heights;
LRTree t(heights);
return t.getMaxArea();
} int main()
{
vector<int> t = {1,2,3,4,5};
Solution s;
cout << s.largestRectangleArea(t);
return 0;
}
代码里面有几个值得注意的问题:
1.按照之前所说的思路,每个节点都得存储一个子直方图,这样并非最好方法,试想如果直方图为n,依次增加,则空间复杂度为O(n^2),故采用了所有节点共用一个直方图,每个节点存储左右界限即可,也就是LRTreeNode的left,right;
2.在每次的子直方图中都减去了底部部分,所以最终的直方图数据会被变化。
该种方法虽然采用了分治的思想,但其本质其实是遍历了所有的可能的矩形,其实效果并不好,由于最小值的多次寻找增加了复杂度,但作为思路历程,还是一并记录。
关于LeetCode的Largest Rectangle in Histogram的低级解法的更多相关文章
- [leetcode]84.Largest Rectangle in Histogram ,O(n)解法剖析
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- LeetCode 84. Largest Rectangle in Histogram 单调栈应用
LeetCode 84. Largest Rectangle in Histogram 单调栈应用 leetcode+ 循环数组,求右边第一个大的数字 求一个数组中右边第一个比他大的数(单调栈 Lee ...
- leetcode之Largest Rectangle in Histogram
问题来源:Largest Rectangle in Histogram 问题描述:给定一个长度为n的直方图,我们可以在直方图高低不同的长方形之间画一个更大的长方形,求该长方形的最大面积.例如,给定下述 ...
- [LeetCode] Largest Rectangle in Histogram O(n) 解法详析, Maximal Rectangle
Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...
- Java for LeetCode 084 Largest Rectangle in Histogram【HARD】
For example, Given height = [2,1,5,6,2,3], return 10. 解题思路: 参考Problem H: Largest Rectangle in a Hist ...
- [LeetCode] 84. Largest Rectangle in Histogram 直方图中最大的矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- LeetCode之Largest Rectangle in Histogram浅析
首先上题目 Given n non-negative integers representing the histogram's bar height where the width of each ...
- [LeetCode OJ] Largest Rectangle in Histogram
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- [LeetCode#84]Largest Rectangle in Histogram
Problem: Given n non-negative integers representing the histogram's bar height where the width of ea ...
随机推荐
- TOGAF架构能力框架之架构能力建设和架构治理
TOGAF架构能力框架之架构能力建设和架构治理 为了确保架构功能在企业中能够被成功地运用,企业需要通过建立适当的组织结构.流程.角色.责任和技能来实现其自身的企业架构能力,而这也正是TOGAF的架构能 ...
- [转]浅谈PCA的适用范围
线性代数主要讲矩阵,矩阵就是线性变换,也就是把直线变成直线的几何变换,包括过原点的旋转.镜射.伸缩.推移及其组合.特征向量是对一个线性变换很特殊的向量:只有他们在此变换下可保持方向不变,而对应的特征值 ...
- C# 根据时间创建文件夹
string file = ((fileNameIndex)index).ToString(); if (!Directory.Exists(HttpContext.Current.Server.Ma ...
- iOS 监听声音按键
有时在项目中需要监听用户是否按下了物理声音键,然后来做某些操作,如:你自定义了一个照相功能,希望用户按下声音按键时也能进行拍照,苹果自带的照相机就有这种功能. 监听物理声音键是否按下的方法有很多中,我 ...
- springMVC3学习(一)--框架搭建
由于项目需要,学习下springMVC,在此简单记录一下. 如有十万个为什么,暂且忽略,待以后研究. 本人是基于3.1.1版本开发,如遇jar包版本冲突等其他问题,概不负责. 下载地址:上传此zip资 ...
- linux学习之linux的hostname修改详解《转》
linux的hostname是一个kernel变量,可以通过hostname命令来查看本机的hostname.也可以直接cat /proc/sys/kernel/hostname查看. #hostna ...
- go: GOPATH entry is relative; must be absolute path: "".
安装:vscode-go出现以下提示: go: GOPATH entry is relative; must be absolute path: "".Run 'go help g ...
- 从c#基础到java基础的学习的感悟
从进入培训公司到现在已经有三周多了,我想我和绝大多数人一样,能考虑进入培训学校,肯定是心理做好了准备的,那就是只有一个目的学好这门技术,从之前的开班典礼来看,从每个同学的自我介绍,我们这的大部分人来这 ...
- zabbix 布署实践【7 H3C网络设备监控模版制作思路】
我们知道,zabbix安装后自带Template OS Linux 模版已满足了绝大部分Linux服务器的基础环境监控,只是我们在其模版上稍微修改,可配合将SWAP监控取消,另存为一个叫OS Linu ...
- unity3dWeb版文本转语音
文本转语音 <script type="text/javascript"> function VioceSpeack(str) { var zhText = str; ...