在某篇博客见到的Largest Rectangle in Histogram的题目,感觉蛮好玩的,于是想呀想呀,怎么求解呢?

还是先把题目贴上来吧

题目写的很直观,就是找直方图的最大矩形面积,不知道是受之前的trie tree影响怎么的,感觉树这玩意还真有用,于是就思考呀,还真别说,真想出一种方式,好吧,其实是入了一个大坑,也无妨,记录下来,好歹也是思路历程.....

大概思路这样的:

每次寻找直方图的最小值,记录此时以该最小值,和以其为高度的矩形面积,再将直方图以该最小值为界限,将直方图分成若干份,按照同样思路对每个子直方图继续求解,这样如果把每个直方图作为节点的话,其实也形成了一棵树,不过这树没啥价值,因为本题并不关心得到最大矩形的路径,只要求面积即可,是时候献丑了,代码贴上:

#include <vector>
#include <list>
#include <iostream>
#include <stack>
using namespace std;
class LRTreeNode
{
private:
int getMin()
{
if (right-left == 0)
{
return 0;
}
int min = (*heights)[left];
for (int i=left;i<right;i++)
{
min = (*heights)[i] > min ? min : (*heights)[i];
}
return min;
}
void getMaxArea()
{
maxArea = bottom*(right-left);
}
public:
int left, right;
int bottom;
int min;
int maxArea;
static vector<int>* heights;
vector<LRTreeNode*> lrnv;
LRTreeNode(int bottom,int left,int right)
{
this->left = left;
this->right = right;
this->bottom=getMin()+bottom;
this->min = getMin();
getMaxArea();
}
vector<LRTreeNode*>* genChildren()
{
int left2=left, right2=left;
for (int i = left; i < right; i++)
{
(*heights)[i] -= min; if ((*heights)[i] == 0 )
{
if (right2-left2 != 0)
{
lrnv.push_back(new LRTreeNode(bottom,left2,right2));
}
left2 = i+1;
right2 = i+1;
}
else
{
right2++;
}
}
if (right2 - left2 != 0)
{
lrnv.push_back(new LRTreeNode(bottom, left2, right2));
}
return &lrnv;
}
};
vector<int>* LRTreeNode::heights = NULL;
class LRTree
{
private:
LRTreeNode root;
public:
LRTree(vector<int>& heights) :root(0,0,heights.size())
{ }
int getMaxArea()
{
int max = root.maxArea;
list<LRTreeNode*> st;
vector<LRTreeNode*>* t = root.genChildren();
LRTreeNode* stt;
for (int i = 0; i < t->size(); i++)
{
st.push_back((*t)[i]);
max = max >(*t)[i]->maxArea ? max : (*t)[i]->maxArea;
}
while (st.empty() == false)
{
stt = st.back();
t = stt->genChildren();
st.pop_back();
for (int i = 0; i < t->size(); i++)
{
st.push_back((*t)[i]);
max = max > (*t)[i]->maxArea ? max : (*t)[i]->maxArea;
}
delete stt;
}
return max;
}
}; class Solution {
public:
int largestRectangleArea(vector<int>& heights);
};
int Solution::largestRectangleArea(vector<int>& heights)
{
LRTreeNode::heights = &heights;
LRTree t(heights);
return t.getMaxArea();
} int main()
{
vector<int> t = {1,2,3,4,5};
Solution s;
cout << s.largestRectangleArea(t);
return 0;
}

代码里面有几个值得注意的问题:

1.按照之前所说的思路,每个节点都得存储一个子直方图,这样并非最好方法,试想如果直方图为n,依次增加,则空间复杂度为O(n^2),故采用了所有节点共用一个直方图,每个节点存储左右界限即可,也就是LRTreeNode的left,right;

2.在每次的子直方图中都减去了底部部分,所以最终的直方图数据会被变化。

该种方法虽然采用了分治的思想,但其本质其实是遍历了所有的可能的矩形,其实效果并不好,由于最小值的多次寻找增加了复杂度,但作为思路历程,还是一并记录。

关于LeetCode的Largest Rectangle in Histogram的低级解法的更多相关文章

  1. [leetcode]84.Largest Rectangle in Histogram ,O(n)解法剖析

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  2. LeetCode 84. Largest Rectangle in Histogram 单调栈应用

    LeetCode 84. Largest Rectangle in Histogram 单调栈应用 leetcode+ 循环数组,求右边第一个大的数字 求一个数组中右边第一个比他大的数(单调栈 Lee ...

  3. leetcode之Largest Rectangle in Histogram

    问题来源:Largest Rectangle in Histogram 问题描述:给定一个长度为n的直方图,我们可以在直方图高低不同的长方形之间画一个更大的长方形,求该长方形的最大面积.例如,给定下述 ...

  4. [LeetCode] Largest Rectangle in Histogram O(n) 解法详析, Maximal Rectangle

    Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...

  5. Java for LeetCode 084 Largest Rectangle in Histogram【HARD】

    For example, Given height = [2,1,5,6,2,3], return 10. 解题思路: 参考Problem H: Largest Rectangle in a Hist ...

  6. [LeetCode] 84. Largest Rectangle in Histogram 直方图中最大的矩形

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  7. LeetCode之Largest Rectangle in Histogram浅析

    首先上题目 Given n non-negative integers representing the histogram's bar height where the width of each ...

  8. [LeetCode OJ] Largest Rectangle in Histogram

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  9. [LeetCode#84]Largest Rectangle in Histogram

    Problem: Given n non-negative integers representing the histogram's bar height where the width of ea ...

随机推荐

  1. tomcat安装和基本配置

    首先,默认电脑上已经配置好java环境. 在http://tomcat.apache.org/这里下载tomcat二进制版本,下载到本地后随意解压在某个盘, 我解压在D:\apache-tomcat- ...

  2. OSGI原形(.NET)

    OSGI原形(.NET) 目前只做了基础的功能,比如: 各个模块单独的AppDomain容器 Activator激活 导出的服务检查 不过,虽说这样,但目前的这个版本已经能实现模块分离.互相依赖调用等 ...

  3. ThreadPool&ManualResetEvent

    在多线程的程序中,经常会出现两种情况: 一种情况: 应用程序中,线程把大部分的时间花费在等待状态,等待某个事件发生,然后才能给予响应 这一般使用ThreadPool(线程池)来解决: 另一种情况:线程 ...

  4. SVN 在 Xcode中的状态说明

    最近同事总是问我关于SVN状态的问题,‘C’是什么意思啦?‘A’是什么意思啦?等等一系列问题. 为了方便以后查阅,以及新同事的快速融入,特在此记录一下^_^. 当然了大家也可以google一下,一搜一 ...

  5. Mongodb 集群搭建以及常见错误

    Mongodb 集群搭建以及常见错误 1 关于Replica Sets +Sharding(主从复制加分片)搭建,不这详细去说,网上有很多,大部分的例子就三台服务器之间做主从复制,分2个shard,架 ...

  6. C++输入一个字符串,把其中的字符按照逆序输出的两种方法

    用字符数组方法: 基本思路是,先判断字符的结束标志'\0',然后从该位置向前输出. 实现代码: #include<iostream> using namespace std; int ma ...

  7. Java 在本地文件中查找固定字符串

    适用范围:只适用于在文本文档中查找(如,txt.java.c等等,并不适用与doc.xls等等这些文件),可嵌套文件夹.但是对中文不支持. 例如:文件夹:F:/demo 子文件夹:F:/demo/er ...

  8. samba安装与配置

    1.安装软件包rpm -q samba samba-common samba-client cifs-utilsyum -y install samba samba-common samba-clie ...

  9. Java核心技术 卷Ⅰ 基础知识(1)

    第三章 Java的基本程序设计结构 Java对大小写敏感 命名规范为骆驼命名法,不能使用保留字 main方法必须声明为public 如果main方法正常退出,java应用程序的退出代码为0,表示成功运 ...

  10. NUTZ中处理系统未捕获异常

    关键内容 mvc-chain.js ViewProcessor ai.setFailView(“redirect:/sysError.html”); log.error(this.trrowableT ...