POIXV Permutation
Description
Multiset is a mathematical object similar to a set, but each member of a multiset may have more than one membership. Just as with any set, the members of a multiset can be ordered in many ways. We call each such ordering a permutation of the multiset. For example, among the permutations of the multiset\((1,1,2,3,3,3,7,8)\) there are\((2,3,1,3,3,7,1,8)\) and\((8,7,3,3,3,2,1,1)\) .
We will say that one permutation of a given multiset is smaller (in lexicographic order) than another permutation, if on the first position that does not match the first permutation has a smaller element than the other one. All permutations of a given multiset can be numbered (starting from one) in an increasing order.
Write a programme that
- reads the description of a permutation of a multiset and a positive integer \(m\) from the standard input,
- determines the remainder of the rank of that permutation in the lexicographic ordering modulo \(m\),
- writes out the result to the standard output.
Input
The first line of the standard input holds two integers \(N\) and \(M\) \((1 \le N \le 3 \times 10^5, 2 \le m \le 10^9)\), separated by a single space. These denote, respectively, the cardinality of the multiset and the number \(m\). The second line of the standard input contains \(n\) positive integers \(a_i\) \((1 \le a_i \le 3 \times 10^5)\), separated by single spaces and denoting successive elements of the multiset permutation.
Output
The first and only line of the standard output is to hold one integer, the remainder modulo of the rank of the input permutation in the lexicographic ordering.
Sample Input
4 1000
2 1 10 2
Sample Output
5
首先我们考虑没有重复的元素的排列,则其序数(从\(0\)开始)为
\]
其中\(r_i\)表示\(a_i\)在未在排列前\(i-1\)位出现的元素的排名。这就是康托展开,用树状数组可以将复杂度优化到\(O(nlogn)\)。
下面我们考虑有重集合,用康托展开一样的方式思考。我们可以得出
\]
其中\(j\)表示除去排列前\(i-1\)位的元素还剩的元素,\(f_{i,j}\)表示确定了前\(i-1\)位后第\(i\)位放\(j\)的所有可能的排列个数。用可重排列公式,不难得出
\]
\(c_k\)表示确定了前\(i-1\)位后可重集合中\(k\)这个数的个数。
那么问题就来了,我们怎么去计算这个式子呢?
其实还是可以用树状数组来维护的。
首先有$$f_{i,j} = c_j\frac{(N-i)!}{\prod_{k = 1}^{3 \times 10^5}c_k}$$
所以
\]
然后没移动\(i\)一次,只会修改一个\(c_j\),于是复杂度还是\(O(nlogn)\)。
但是还有一个问题——\(M\)不一定时素数。我们可以将其分解质因数
\]
然后我们只要能够计算出\(ans\)在模\(M_i = p_i^{d_i}\)的值,再通过中国剩余定理就可以计算答案了。那么这个怎么求呢?
我们可以将每个数字\(x\)用个二元组\((s,t)\)来表示,\(x = s \times p_i^t\),且\((s,p_i) = 1\)。
于是有
- \((s,t) \times (u,v) = (s \times u,t+v)\)
- \((s,t) / (u,v) = (s \times u^{-1},t-v)\)
\(u^{-1}\)表示\(u\)在模\(M_i\)下的逆元。由此可以看出该二元组的第一关键字可以是模\(M_i\)意义下的。用此方法处理乘除。
当涉及到加法的时候将二元组转换成普通数即可。
#include<cstring>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long ll;
#define lowbit(a) (a&(-a))
#define maxn (300010)
int mod,ans,N,M,tot,A[maxn],aim[maxn],Mi[maxn],Pi[maxn],res[maxn],tree[maxn],num[maxn],tnum[maxn];
inline ll exgcd(ll a,ll b,ll c)
{
if (!a) return -1;
else if (!(c % a)) return c/a;
ll t = exgcd(b % a,a,((-c % a)+a)%a);
if (t == -1) return -1;
return (t*b+c)/a;
}
inline ll qsm(ll a,int b,int c)
{
ll ret = 1;
for (;b;b >>= 1,(a *= a) %= c) if (b & 1) (ret *= a) %= c;
return ret;
}
struct node
{
int a,b;
inline node(int x = 0,int p = 0) { if (!p) return; b = 0; while (!(x % p)) ++b,x /= p; a = x%mod; }
friend inline node operator * (const node &x,const node &y)
{
node ret;
ret.a = (ll)x.a*(ll)y.a%mod; ret.b = x.b+y.b;
return ret;
}
friend inline node operator / (const node &x,const node &y)
{
node ret; int inv = exgcd(y.a,mod,1)%mod;
ret.a = (ll)x.a*(ll)inv%mod; ret.b = x.b-y.b;
return ret;
}
inline int tran(int p) { return (ll)a*qsm(p,b,mod)%mod; }
};
inline void ins(int a,int b) { for (;a <= 300000;a += lowbit(a)) tree[a] += b; }
inline int calc(int a) { int ret = 0; for (;a;a -= lowbit(a)) ret += tree[a]; return ret; }
inline void Div(int key)
{
for (int i = 2;i*i <= key;++i)
if (key % i == 0)
{
Mi[++tot] = 1; Pi[tot] = i;
while (key % i == 0) Mi[tot] *= i,key /= i;
}
if (key > 1) Mi[++tot] = key,Pi[tot] = key;
}
inline void init()
{
memset(tree,0,sizeof(tree)); memcpy(tnum,num,sizeof(num));
for (int i = 1;i <= 300000;++i) if (num[i]) ins(i,num[i]);
}
inline void work(int id)
{
init(); mod = Mi[id]; node now(1,Pi[id]);
for (int i = 1;i < N;++i)
{
node tmp(i,Pi[id]);
now = now*tmp;
}
for (int i = 1;i <= 300000;++i)
for (int j = 2;j <= num[i];++j) { node tmp(j,Pi[id]); now = now/tmp; }
for (int i = 1,sum;i <= N;++i)
{
if (sum = calc(A[i]-1)) res[id] += (now*node(sum,Pi[id])).tran(Pi[id]);
if (res[id] >= mod) res[id] -= mod; ins(A[i],-1);
if (i < N)
{
node tmp1(N-i,Pi[id]),tmp2(tnum[A[i]]--,Pi[id]);
now = now*tmp2/tmp1;
}
}
}
inline int crt()
{
int ret = 0;
for (int i = 1;i <= tot;++i)
{
int tm = M/Mi[i],inv = exgcd(tm%Mi[i],Mi[i],1)%Mi[i];
ret += ((ll)res[i]*(ll)inv%M*(ll)tm)%M;
if (ret >= M) ret -= M;
}
return ret;
}
int main()
{
// freopen("permutation.in","r",stdin);
// freopen("permutation.out","w",stdout);
scanf("%d %d",&N,&M);
for (int i = 1;i <= N;++i) scanf("%d",A+i);
Div(M);
for (int i = 1;i <= N;++i) ++num[A[i]];
for (int i = 1;i <= tot;++i) work(i);
ans = crt(); if (++ans >= M) ans -= M;
printf("%d",ans);
// fclose(stdin); fclose(stdout);
return 0;
}
POIXV Permutation的更多相关文章
- Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Palindrome Permutation II 回文全排列之二
Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...
- [LeetCode] Palindrome Permutation 回文全排列
Given a string, determine if a permutation of the string could form a palindrome. For example," ...
- [LeetCode] Permutation Sequence 序列排序
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Next Permutation 下一个排列
Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...
- Leetcode 60. Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- UVA11525 Permutation[康托展开 树状数组求第k小值]
UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+ ...
- Permutation test: p, CI, CI of P 置换检验相关统计量的计算
For research purpose, I've read a lot materials on permutation test issue. Here is a summary. Should ...
- Permutation
(M) Permutations (M) Permutations II (M) Permutation Sequence (M) Palindrome Permutation II
随机推荐
- XAF-列表视图编辑模式
下面来看看XAF中列表有哪些编辑模式: 一.inline编辑 下图说明了WinForms和ASP.NET应用程序中的可编辑列表视图. 在win中,这个很友好,就像excel中编辑一样.5星功能^_^. ...
- 安装vsftp流程整理
昨天装个FTP,发现之前写的一篇操作日志太简陋了,重新整理了下记在这儿 # 安装 VSFTP yum -y install vsftpd # 创建FTP日志文件路径 touch /var/log/vs ...
- DOG角点检测——opencv实现
1.原理 Difference of Gaussian(DOG)是高斯函数的差分.将两幅图像在不同参数下的高斯滤波结果相减,得到DoG图.步骤: 处理一幅图像在不同高斯参数下的DoG 用两个不同的5x ...
- 基于C++的类编程总结
1. 类中public, protected, private这三个属性的区别: public意味着所有事物都能查询具有该属性的食物.(也即所有人可以在我不知情的情况下,查看我账户里还有多少钱). p ...
- Leetcode-34-Search for a Range-(Medium)
这道题借助二分查找算法来查找目标值的index 然后向前和向后分别搜索起始边界 注意开始排除异常值优化速度 #!/usr/local/bin/python3 # -*- coding: utf-8 - ...
- Attempt to write to field 'android.support.v4.app.FragmentManagerImpl android.support.v4.app.Fragment.mFragmentManager' on a null object reference
E/AndroidRuntime﹕ FATAL EXCEPTION: mainProcess: org.example.magnusluca.drawertestapp, PID: 3624java. ...
- 某网站看到的某神的Symfony_使用心得
1.symfony2这种量级的框架怎么可能有捷径可走?其定位是松藕合和易扩展,并不是很容易的事.sf2是靠configuration系统(它可以把各种语义化yml配置转为数组)和服务容器概念来实现的b ...
- 《C++反汇编与逆向分析技术揭秘》——函数的工作原理
各种调用方式的考察 示例: cdecl方式是调用者清空堆栈: 如果执行的是fastcall: 借助两个寄存器传递参数: 参数1和2借助局部变量来存储: 返回值 如果返回值是结构体: 返回值存放在eax ...
- 图片上传插件用法,JS语法【三】
注意点: 作为文件域(<input type="file">)必须要有name属性,如果没有name属性,上传之后服务器是获取不到图片的.如:正确的写法是<inp ...
- Oracle 中的Top写法
由于Oracle不支持select top 语句,所以在Oracle中经常是用order by 跟rownum的组合来实现select top n的查询.简单地说,实现方法如下所示:select 列名 ...