Description

Multiset is a mathematical object similar to a set, but each member of a multiset may have more than one membership. Just as with any set, the members of a multiset can be ordered in many ways. We call each such ordering a permutation of the multiset. For example, among the permutations of the multiset\((1,1,2,3,3,3,7,8)\) there are\((2,3,1,3,3,7,1,8)\) and\((8,7,3,3,3,2,1,1)\) .

We will say that one permutation of a given multiset is smaller (in lexicographic order) than another permutation, if on the first position that does not match the first permutation has a smaller element than the other one. All permutations of a given multiset can be numbered (starting from one) in an increasing order.

Write a programme that

  • reads the description of a permutation of a multiset and a positive integer \(m\) from the standard input,
  • determines the remainder of the rank of that permutation in the lexicographic ordering modulo \(m\),
  • writes out the result to the standard output.

Input

The first line of the standard input holds two integers \(N\) and \(M\) \((1 \le N \le 3 \times 10^5, 2 \le m \le 10^9)\), separated by a single space. These denote, respectively, the cardinality of the multiset and the number \(m\). The second line of the standard input contains \(n\) positive integers \(a_i\) \((1 \le a_i \le 3 \times 10^5)\), separated by single spaces and denoting successive elements of the multiset permutation.

Output

The first and only line of the standard output is to hold one integer, the remainder modulo of the rank of the input permutation in the lexicographic ordering.

Sample Input

4 1000

2 1 10 2

Sample Output

5

首先我们考虑没有重复的元素的排列,则其序数(从\(0\)开始)为

\[X = \sum_{i = 1}^{N}(r_i-1)(N-i)!
\]

其中\(r_i\)表示\(a_i\)在未在排列前\(i-1\)位出现的元素的排名。这就是康托展开,用树状数组可以将复杂度优化到\(O(nlogn)\)。

下面我们考虑有重集合,用康托展开一样的方式思考。我们可以得出

\[X = \sum_{i = 1}^N \sum_{j < a_i}f_{i,j}
\]

其中\(j\)表示除去排列前\(i-1\)位的元素还剩的元素,\(f_{i,j}\)表示确定了前\(i-1\)位后第\(i\)位放\(j\)的所有可能的排列个数。用可重排列公式,不难得出

\[f_{i,j} = \frac{(N-i)!}{(\prod_{k = 1}^{j-1}c_k)(c_j-1))(\prod_{k = j+1}^{3 \times 10^5}c_k)}
\]

\(c_k\)表示确定了前\(i-1\)位后可重集合中\(k\)这个数的个数。

那么问题就来了,我们怎么去计算这个式子呢?

其实还是可以用树状数组来维护的。

首先有$$f_{i,j} = c_j\frac{(N-i)!}{\prod_{k = 1}^{3 \times 10^5}c_k}$$

所以

\[\sum_{j < a_i}f_{i,j} = \frac{(N-i)!}{\prod_{k = 1}^{3 \times 10^5}c_k}\sum_{k = 1}^{a_i-1} c_k
\]

然后没移动\(i\)一次,只会修改一个\(c_j\),于是复杂度还是\(O(nlogn)\)。

但是还有一个问题——\(M\)不一定时素数。我们可以将其分解质因数

\[M = \prod_{i = 1}^qp_i^{d_i}
\]

然后我们只要能够计算出\(ans\)在模\(M_i = p_i^{d_i}\)的值,再通过中国剩余定理就可以计算答案了。那么这个怎么求呢?

我们可以将每个数字\(x\)用个二元组\((s,t)\)来表示,\(x = s \times p_i^t\),且\((s,p_i) = 1\)。

于是有

  • \((s,t) \times (u,v) = (s \times u,t+v)\)
  • \((s,t) / (u,v) = (s \times u^{-1},t-v)\)

\(u^{-1}\)表示\(u\)在模\(M_i\)下的逆元。由此可以看出该二元组的第一关键字可以是模\(M_i\)意义下的。用此方法处理乘除。

当涉及到加法的时候将二元组转换成普通数即可。

#include<cstring>
#include<cstdio>
#include<cstdlib>
using namespace std; typedef long long ll;
#define lowbit(a) (a&(-a))
#define maxn (300010)
int mod,ans,N,M,tot,A[maxn],aim[maxn],Mi[maxn],Pi[maxn],res[maxn],tree[maxn],num[maxn],tnum[maxn]; inline ll exgcd(ll a,ll b,ll c)
{
if (!a) return -1;
else if (!(c % a)) return c/a;
ll t = exgcd(b % a,a,((-c % a)+a)%a);
if (t == -1) return -1;
return (t*b+c)/a;
} inline ll qsm(ll a,int b,int c)
{
ll ret = 1;
for (;b;b >>= 1,(a *= a) %= c) if (b & 1) (ret *= a) %= c;
return ret;
} struct node
{
int a,b;
inline node(int x = 0,int p = 0) { if (!p) return; b = 0; while (!(x % p)) ++b,x /= p; a = x%mod; }
friend inline node operator * (const node &x,const node &y)
{
node ret;
ret.a = (ll)x.a*(ll)y.a%mod; ret.b = x.b+y.b;
return ret;
}
friend inline node operator / (const node &x,const node &y)
{
node ret; int inv = exgcd(y.a,mod,1)%mod;
ret.a = (ll)x.a*(ll)inv%mod; ret.b = x.b-y.b;
return ret;
}
inline int tran(int p) { return (ll)a*qsm(p,b,mod)%mod; }
}; inline void ins(int a,int b) { for (;a <= 300000;a += lowbit(a)) tree[a] += b; }
inline int calc(int a) { int ret = 0; for (;a;a -= lowbit(a)) ret += tree[a]; return ret; } inline void Div(int key)
{
for (int i = 2;i*i <= key;++i)
if (key % i == 0)
{
Mi[++tot] = 1; Pi[tot] = i;
while (key % i == 0) Mi[tot] *= i,key /= i;
}
if (key > 1) Mi[++tot] = key,Pi[tot] = key;
} inline void init()
{
memset(tree,0,sizeof(tree)); memcpy(tnum,num,sizeof(num));
for (int i = 1;i <= 300000;++i) if (num[i]) ins(i,num[i]);
} inline void work(int id)
{
init(); mod = Mi[id]; node now(1,Pi[id]);
for (int i = 1;i < N;++i)
{
node tmp(i,Pi[id]);
now = now*tmp;
}
for (int i = 1;i <= 300000;++i)
for (int j = 2;j <= num[i];++j) { node tmp(j,Pi[id]); now = now/tmp; }
for (int i = 1,sum;i <= N;++i)
{
if (sum = calc(A[i]-1)) res[id] += (now*node(sum,Pi[id])).tran(Pi[id]);
if (res[id] >= mod) res[id] -= mod; ins(A[i],-1);
if (i < N)
{
node tmp1(N-i,Pi[id]),tmp2(tnum[A[i]]--,Pi[id]);
now = now*tmp2/tmp1;
}
}
} inline int crt()
{
int ret = 0;
for (int i = 1;i <= tot;++i)
{
int tm = M/Mi[i],inv = exgcd(tm%Mi[i],Mi[i],1)%Mi[i];
ret += ((ll)res[i]*(ll)inv%M*(ll)tm)%M;
if (ret >= M) ret -= M;
}
return ret;
} int main()
{
// freopen("permutation.in","r",stdin);
// freopen("permutation.out","w",stdout);
scanf("%d %d",&N,&M);
for (int i = 1;i <= N;++i) scanf("%d",A+i);
Div(M);
for (int i = 1;i <= N;++i) ++num[A[i]];
for (int i = 1;i <= tot;++i) work(i);
ans = crt(); if (++ans >= M) ans -= M;
printf("%d",ans);
// fclose(stdin); fclose(stdout);
return 0;
}

POIXV Permutation的更多相关文章

  1. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  2. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  3. [LeetCode] Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome. For example," ...

  4. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  5. [LeetCode] Next Permutation 下一个排列

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  6. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  7. UVA11525 Permutation[康托展开 树状数组求第k小值]

    UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+ ...

  8. Permutation test: p, CI, CI of P 置换检验相关统计量的计算

    For research purpose, I've read a lot materials on permutation test issue. Here is a summary. Should ...

  9. Permutation

    (M) Permutations (M) Permutations II (M) Permutation Sequence (M) Palindrome Permutation II

随机推荐

  1. SQL注入(三)

    邮给我一个密码 我们意识到虽然不能添加一条新的记录在members表中,但我们可以通过修改一个存在的记录, 这也获得了我们的证明是可行的. 从先前的步骤中,我们知道bob@example.com在系统 ...

  2. OSI模型第四层传输层--UDP协议

    1.udp协议 UDP是OSI参考模型中一种无连接的传输层协议,它主要用于不要求分组顺序到达的传输中,分组传输顺序的检查与排序由应用层完成[2]  ,提供面向事务的简单不可靠信息传送服务.UDP 协议 ...

  3. 离线安装gcc(CentOS7)

    安装Redis时,需要使用gcc.如果系统是联网的,那么直接使用如下命令联网安装. yum -y install gcc 但是如果系统不可联网,那么就需要一种离线安装的方式了.步骤如下: 1. 从Ce ...

  4. CG 标准函数库

    (1)数学函数 函数 功能描述 abs(x) 返回输入参数的绝对值 acos(x) 反余切函数,输入参数范围为[-1,1], 返回[0,π]区间的角度值 all(x) 如果输入参数均不为0,则返回tu ...

  5. java系统参数

    package com.test; import java.sql.SQLException; import java.util.Properties; import com.mchange.v2.c ...

  6. Linux中一些简单命令(一)

    1.查看当前用户:who 2.显示当前目录:pwd 3.查看当前服务器的时间:date 4.查看日历:cal+year; 例如:cal 2016 5.计算器:bc  退出计算器:quit或者ctrl+ ...

  7. xml动态修改 dom4j修改

    xml的动态修改需要传入的参数 xml的位置(tomcat中的发布位置).修改后的xml需要保存的位置(因为动态修改,所以建议和xml未修改前的位置相同).添加的节点的信息.或者修改的节点的信息 SA ...

  8. Payload Inject And Fake

    常见捆绑注入payload手法 Payload捆绑注入 注入exe型+编码: msfvenom -a <arch> --plateform <platform> -p < ...

  9. js事件监听-addEventListener (w3c标准) 和 attachEvent(ie)

    研究了一个小时,没看懂这两个属性 window.onload = function(){ var oDiv = document.getElementById("J_myDiv") ...

  10. Postman怎么用?

    国庆期间的工作就是搞清楚postman怎么用?