【BZOJ】3427: Poi2013 Bytecomputer
题意:
给定一个长度为\(n\)的\(\{-1, 0, 1\}\)组成的序列,你可以进行\(x_i=x_i+x_{i-1}\)这样的操作,求最少操作次数使其变成不降序列。(\(n \le 1000000\))
分析:
我们考虑第\(i\)个数,如果\(x_i < x_{i-1}\),要想\(x_i \ge x_{i-1}\),那么\(x_i\)至少要加一次\(x_{i-1}\)才能大过\(x_{i-1}\)(当然\(x_{i-1} < 0\)那么永远不可能了)。
题解
然后我们猜测,最终的最优序列也一定由\(\\\{-1, 0, 1\\\}\)三个数组成。我们来证明一下:
假设第一个不是\(\\\{-1, 0, 1\\\}\)数的位置为\(p\),且假设\(p < n\),则容易知道\(x_p > 1\)。当\(x_{p+1} = -1\)时,我们要加2次才能大于等于\(x_p\),当\(x_{p+1}=0或1\)时,我们要加1次。而由于\(x_p > 1\),那么说明\(x_p\)也一定能够等于\(1\),这是因为\(x_{p-1}\)必然等于\(1\)(否则\(x_p\)就不会大于\(1\))。而当\(x_p=1\)时,对于\(x_{p+1} \in \\\{-1, 0, 1\\\}\)我们分别只需要加2次、加1次和加0次就能满足\(x_{p+1} \ge x_p\)。显然比\(x_p > 1\)要优。得证。
于是我们设\(d[i, j]\)表示前\(i\)个元素当前元素为\(j\)时的最少操作次数,然后推一下就行了..
#include <bits/stdc++.h>
using namespace std;
const int oo=~0u>>1;
int n, d[2][3];
int main() {
scanf("%d", &n);
int x; scanf("%d", &x);
int *now=d[0], *last=d[1];
last[0]=last[1]=last[2]=oo;
if(x==-1) last[0]=0;
if(x==0) last[1]=0;
if(x==1) last[2]=0;
for(int i=2; i<=n; ++i) {
scanf("%d", &x);
now[0]=now[1]=now[2]=oo;
if(last[0]!=oo) {
now[0]=last[0]+x+1;
if(x>=0) now[1]=last[0]+x;
if(x==1) now[2]=last[0];
}
if(last[1]!=oo) {
if(x==0) now[1]=min(now[1], last[1]);
if(x==1) now[2]=min(now[2], last[1]);
}
if(last[2]!=oo) {
now[2]=min(now[2], last[2]+1-x);
}
swap(now, last);
}
swap(now, last);
int ans=min(min(now[0], now[1]), now[2]);
if(ans==oo) puts("BRAK");
else printf("%d\n", ans);
return 0;
}
【BZOJ】3427: Poi2013 Bytecomputer的更多相关文章
- 【BZOJ】3052: [wc2013]糖果公园
http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...
- 【BZOJ】3319: 黑白树
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...
- 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...
- 【BZOJ】1013: [JSOI2008]球形空间产生器sphere
[BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...
- 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...
- 【BZOJ】【3083】遥远的国度
树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果roo ...
- 【BZOJ】【2434】【NOI2011】阿狸的打字机
AC自动机+DFS序+BIT 好题啊……orz PoPoQQQ 大爷 一道相似的题目:[BZOJ][3172][TJOI2013]单词 那道题也是在fail树上数有多少个点,只不过这题是在x的fail ...
- 【BZOJ】【2738】&【Tsinsen】【A1333】矩阵乘法
整体二分+树状数组 过了[BZOJ][2527][POI2011]Meteors以后这题就没那么难啦~ 关键是[从小到大]依次插入数字,然后整体二分每个查询的第k大是在第几次插入中被插入的……嗯大概就 ...
- 【BZOJ】【3170】【TJOI2103】松鼠聚会
切比雪夫距离+曼哈顿距离 题解:http://www.cnblogs.com/zyfzyf/p/4105456.html 其实应该先做这题再做[BZOJ][3210]花神的浇花集会的吧…… 我们发现d ...
随机推荐
- 高版本api在低版本中的兼容
直接上例子,看如何避免crash. eg:根据给出路径,获取此路径所在分区的总空间大小. 文档说明:获取文件系统用量情况,在API level 9及其以上的系统,可直接调用File对象的相关方法,以下 ...
- Centos6.5 Zabbix3 server端安装(一)
一.准备阶段: 1.>关闭防火墙 /etc/init.d/iptables stop 2.>关闭selinux vim /etc/selinux/config SELINUX=disabl ...
- Druid初步学习
Druid是一个JDBC组件,它包括三部分: DruidDriver 代理Driver,能够提供基于Filter-Chain模式的插件体系. DruidDataSource 高效可管理的数据库连接池 ...
- Dapper.Net 应用
Dapper应用 1.Dapper是什么 Dapper是一款轻量级ORM工具.如果你在小的项目中,使用Entity Framework.NHibernate 来处理大数据访问及关系映射,未免有点杀鸡用 ...
- read name 和 read 在 Bash 中的区别
read 带一个参数和不带参数的区别是什么,我本以为仅仅是被赋值的变量的名字不同而已: $ read name 1 $ echo "$name" 1 $ read 1 $ echo ...
- 子类可以有跟父类中同名的方法,但是会重写父类中的方法,甚至是root class中的方法
/* 子类可以重写父类中的方法,甚至是root class中的方法,比如NSObeject 的new方法,但是后提示警告如下 Method is expected to return an insta ...
- sdcms标签
模板防盗:<%if not in_sdcms then response.write("template load fail"):response.end() end if% ...
- Proj.4 API 中文参考
ProjAPI https://github.com/OSGeo/proj.4/wiki/ProjAPI Tom Kralidis在2015年5月27日编辑此页·修订4 简介 执行pj_init()选 ...
- mingw32 捕获异常的4种方法
------------------------------------------------------------------------------- 1. 利用 windows 的API S ...
- “连接配置中心失败,将无法进行正常管理”--腾讯通RTX管理器
[故障现象]: 腾讯通RTX管理器提示“连接配置中心失败,将无法进行正常管理” [解决办法]: 在系统服务中启动“RTX_ConfigCenter”服务即可. 文章收集自网络