MongoDB的学习--索引
索引可以用来优化查询,而且在某些特定类型的查询中,索引是必不可少的。为集合选择合适的索引是提高性能的关键。
先来mock数据
for (i = 0; i < 1000000; i++) {
db.users.insert({
"i": i,
"username": "user" + i,
"age": Math.floor(Math.random() * 120),
"created": new Date()
});
}
数据库中会创建一百万条数据,稍微有点慢,需要等会。
我们可以使用explain()函数查看MongoDB在执行查询的过程中所做的事情。执行如下命令,查找用户名为user1000的用户。
db.users.find({username:"user1000"}).explain()
得到结果如下:
{
"cursor" : "BasicCursor",
"isMultiKey" : false,
"n" : 1,
"nscannedObjects" : 1000000,
"nscanned" : 1000000,
"nscannedObjectsAllPlans" : 1000000,
"nscannedAllPlans" : 1000000,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 7813,
"nChunkSkips" : 0,
"millis" : 411,
"server" : "user:27017",
"filterSet" : false
}
之后会详细介绍各个字段的意思,现在我们只需要知道,"n"表示查询结果的数量,"nscanned"表示MongoDB在完成这个查询的过程中扫描的文件总数,"millis"表示这个查询耗费的毫秒数。可以看到,为了查找user1000,MongoDB遍历了整个集合,消耗了411毫秒。
为了优化查询,我们可以在查找到一个结果的时候,就结束查询,返回结果。命令如下:
db.users.find({username:"user1000"}).limit(1).explain()
结果如下:
{
"cursor" : "BasicCursor",
"isMultiKey" : false,
"n" : 1,
"nscannedObjects" : 1001,
"nscanned" : 1001,
"nscannedObjectsAllPlans" : 1001,
"nscannedAllPlans" : 1001,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 7,
"nChunkSkips" : 0,
"millis" : 1,
"server" : "user:27017",
"filterSet" : false
}
可以看到扫描文档数和消耗时间都变少了很多,但是如果我们要查找user999999,MongoDB还是要遍历集合才能找到。而且随着用户数量的增多,查询会越来越慢。
对于这种情况,创建索引是一个非常好的解决方案:索引可以根据给定的字段组织数据,让MongoDB能够非常快速的找到目标文档。使用如下命令,在username字段上创建一个索引。
db.users.ensureIndex({"username":1})
然后再来执行一下之前执行过的语句
db.users.find({username:"user1000"}).explain()
其结果如下:
{
"cursor" : "BtreeCursor username_1",
"isMultiKey" : false,
"n" : 1,
"nscannedObjects" : 1,
"nscanned" : 1,
"nscannedObjectsAllPlans" : 1,
"nscannedAllPlans" : 1,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 0,
"indexBounds" : {
"username" : [
[
"user1000",
"user1000"
]
]
},
"server" : "user:27017",
"filterSet" : false
}
然后你会发现查询变快了很多,几乎是瞬间完成,这就是使用索引的效果。但是索引也是有代价的,对于添加的每一个索引,每次写操作(插入、更新、删除)都将耗费更多的时间。这是因为当数据发生变动时,MongoDB不仅要更新文档,还要更新集合上的所有索引。因此,MongoDB限制每个集合上最多只能有64个索引。通常,在一个特定的集合上,不应该拥有两个以上的索引。
当一个索引建立在多个字段上时,我们称它为复合索引,创建的语句如下:
db.users.ensureIndex({"age":1, "username":1})
如果查询中有多个排序方向或者查询条件中有多个键,复合索引就会非常有用。
MongoDB对这个索引的使用方法取决于查询的类型。下面是三种主要的方式。
第一种:
db.users.find({"age":21}).sort({"username":-1})
这是一个点查询,用于查找单个值(尽管包含这个值的文档是多个)。由于索引中的第二个字段,查询结果已经是有序的了。这种类型的查询是非常高效的。
第二种:
db.users.find({"age":{"$gte":21,"$lte":30}})
这是一个多值查询,查找到多个值相匹配的文档,MongoDB会使用索引中的第一个键“age”得到匹配文档。如果使用“username”做查询,该索引不起作用。
第三种:
db.users.find({"age":{"$gte":21,"$lte":30}}).sort({"username":1})
这也是一个多值查询,与上一个类似,只是这次需要对查询结果进行排序。MongoDB需要在内存中对结果进行排序,不如上一个高效。
删除索引的命令如下:
db.users.dropIndex('age_1_username_1')
删除users集合中名字为'age_1_username_1'的索引。
所有数据库的索引信息都存储在system.indexes集合中,这是一个保留集合,不能在其中插入或者删除文档,只能通过ensureIndex和dropIndex对其进行操作。
使用如下命令可以获取users集合上的索引信息:
db.users.getIndexes()
结果如下:
[
{
"v" : 1,
"key" : {
"_id" : 1
},
"name" : "_id_",
"ns" : "test.users"
},
{
"v" : 1,
"key" : {
"username" : 1
},
"name" : "username_1",
"ns" : "test.users"
},
{
"v" : 1,
"key" : {
"age" : 1,
"username" : 1
},
"name" : "age_1_username_1",
"ns" : "test.users"
}
]
集合中的每一个索引都有一个名称,用于唯一标识这个索引,也可以用于服务器端来删除或者操作索引。索引的默认形式是keyname1_dir1_keyname2_dir2_..._keynameN_dirN,其中keynameX是索引的键,dirX是索引的方向(1或者-1)。如果索引中包含两个以上的键,这种命名方式就显得比较笨重了,但是我们可以通过ensureIndex指定索引的名称:
db.users.ensureIndex({"a":1, "b":1, ..., "z":1},...{"name":"test_name"})
另外需要注意索引的名称长度是有限制的,所以新建复杂索引时可能需要自定义索引名称。调用getLastError就可以知道索引是否创建成功,或者失败的原因。
MongoDB的学习--索引的更多相关文章
- MongoDB的学习--索引类型和属性(转)
原文链接:MongoDB的学习--索引类型和属性 索引类型 MongDB的索引分为以下几种类型:单键索引.复合索引.多键索引.地理空间索引.全文本索引和哈希索引 单键索引(Single Field I ...
- MongoDB的学习--索引类型和属性
索引类型 MongDB的索引分为以下几种类型:单键索引.复合索引.多键索引.地理空间索引.全文本索引和哈希索引 单键索引(Single Field Indexes) 在一个键上创建的索引就是单键索引, ...
- [转载]MongoDB开发学习(2)索引的基本操作
索引能够极大的提高查询的效率.在数据库中简历索引必不可少. 在MongoDB中可以很轻松的创建索引. 默认索引_id_ 开启MongoDB服务器,创建数据库cnblogs,创建集合Users .(关于 ...
- MongoDB数据模型和索引学习总结
MongoDB数据模型和索引学习总结 1. MongoDB数据模型: MongoDB数据存储结构: MongoDB针对文档(大文件採用GridFS协议)採用BSON(binary json,採用二进制 ...
- NoSQL之【MongoDB】学习(三):配置文件说明
摘要: 继上一篇NoSQL之[MongoDB]学习(一):安装说明 之后,知道了如何安装和启动MongoDB,现在对启动时指定的配置文件(mongodb.conf)进行说明,详情请见官方. 启动Mon ...
- 深入理解MongoDB的复合索引
更新时间:2018年03月26日 10:17:37 作者:Fundebug 我要评论 对于MongoDB的多键查询,创建复合索引可以有效提高性能.这篇文章主要给大家介绍了关于MongoDB复 ...
- MongoDB的学习--explain()和hint()
Explain 从之前的文章中,我们可以知道explain()能够提供大量与查询相关的信息.对于速度比较慢的查询来说,这是最重要的诊断工具之一.通过查看一个查询的explain()输出信息,可以知道查 ...
- mongodb的地理位置索引
mongoDB支持二维空间索引,使用空间索引,mongoDB支持一种特殊查询,如某地图网站上可以查找离你最近的咖啡厅,银行等信息.这个使用mongoDB的空间索引结合特殊的查询方法很容易实现.前提条件 ...
- 双刃剑MongoDB的学习和避坑
双刃剑MongoDB的学习和避坑 MongoDB 是一把双刃剑,它对数据结构的要求并不高.数据通过key-value的形式存储,而value的值可以是字符串,也可以是文档.所以我们在使用的过程中非常方 ...
随机推荐
- Arc Engine下数据的加载处理
1.加载Shapefile数据 IWorkspaceFactory pWorkspaceFactory; IFeatureWorkspace pFeatureWorkspace; IFeatureLa ...
- cent7内核升级4.9
一.手动档 手动档就是从源码开始编译内核安装,好处是可以自己选择任意版本的内核,缺点就是耗时长,编译安装消耗系统资源 1.1.获取 kernel 源码 这世界上最伟大的 Linux 内核源码下载地址是 ...
- 工具mark
http://zh.snipaste.com/ 截图工具 https://brookhong.github.io/2014/04/28/keycast-on-windows-cn.html 按键显示 ...
- markdown语法记录
换行:在结尾加两个空格后回车. 缩进:将输入法切换到全角,两个空格就是两个汉字的大小.
- Replication的犄角旮旯(四)--关于事务复制的监控
<Replication的犄角旮旯>系列导读 Replication的犄角旮旯(一)--变更订阅端表名的应用场景 Replication的犄角旮旯(二)--寻找订阅端丢失的记录 Repli ...
- 用StackExchange.Redis客户端连接阿里云Redis服务遇到的问题
阿里云推荐的Redis服务.NET客户端是ServiceStack.Redis,但ServiceStack.Redis不支持异步,不支持.NET Core,于是尝试使用StackExchange.Re ...
- Github教程(0)
Git下载:https://git-for-windows.github.io/ 我下载的版本是:Git-2.6.3-64-bit.exe 安装:略 默认选项点击"下一步"即可 安 ...
- [.net 面向对象编程基础] (19) LINQ基础
[.net 面向对象编程基础] (19) LINQ基础 上两节我们介绍了.net的数组.集合和泛型.我们说到,数组是从以前编程语言延伸过来的一种引用类型,采用事先定义长度分配存储区域的方式.而集合是 ...
- 由ASP.NET所谓前台调用后台、后台调用前台想到HTTP——实践篇(二)
在由ASP.NET所谓前台调用后台.后台调用前台想到HTTP——理论篇中描述了一下ASP.NET新手的三个问题及相关的HTTP协议内容,在由ASP.NET所谓前台调用后台.后台调用前台想到HTTP—— ...
- sizeof && strlen 的区别
本文主要记录了 sizeof 操作符 和 strlen() 函数的区别,以及各自的用途.(在下才疏学浅,发现错误,还请留言指正) sizeof 和 strlen 的区别 示例代码如下: #includ ...