SQL函数
1,字符串截取拼接
CONCAT(LEFT(c.id_card,LENGTH(c.id_card)-4),'****');
SUBSTRING_INDEX(c.context,'}',1);
SUBSTRING_INDEX(a.task_context,':',-1) as context;
c.mobile LIKE CONCAT('%', '${mobile}', '%')
2,Case函数
(
CASE a.type_code
WHEN 'bp' THEN
'血压'
WHEN 'hr' THEN
'心率'
WHEN 'fbg' THEN
'空腹血糖'
WHEN '2hpbg' THEN
'餐后两小时血糖'
WHEN 'tc' THEN
'总胆固醇'
WHEN 'bua' THEN
'血尿酸'
WHEN 'bmi' THEN
'体质指数'
ELSE
'其他'
END
) AS type_code
3,字符串拼接
CONCAT_WS('/',b.value1,b.value2,b.value3);
CONCAT(a.value1,'mmol/L') AS value1
4,日期加减
DATEDIFF(DATE(MAX(take_time)),DATE(MIN(take_time))) as days
5,年龄计算
YEAR (NOW()) - YEAR (b.birthday) AS birthday
6,IF函数
IF(b.gender=0,'女','男') AS gender
7,COUNT函数
count(DISTINCT(a.called_user_id) & a.begin_calltime>0)
SELECT
a.user_id,
a.realname,
(SELECT COUNT(*) from ut_pic b where b.user_id=a.user_id) as picTotal,
(SELECT COUNT(*) from ut_pic c where c.user_id=a.user_id and is_show=1) as pic,
(SELECT COUNT(*) from ut_video d where d.user_id=a.user_id) as videoTotal,
(SELECT COUNT(*) from ut_video e where e.user_id=a.user_id and is_show=1) as video
FROM
ut_user a
with ta as
(
select nvl(v.update_time,v.create_time) sj,v.housekeeper_id hid from t_crd_video v
union all
select nvl(a.update_time,a.create_time) sj,a.housekeeper_id hid from t_crd_album a
)
select
h.id ID,h.real_name realName,
(select count(1) from t_crd_album t where t.vaild=1 and t.housekeeper_id=h.id and t.is_show=1) picShow,
(select count(1) from t_crd_album t where t.vaild=1 and t.housekeeper_id=h.id) picTotal,
(select count(1) from t_crd_video v where v.vaild=1 and v.housekeeper_id=h.id and v.is_show=1 ) vidShow,
(select count(1) from t_crd_video v where v.vaild=1 and v.housekeeper_id=h.id ) vidTotal,
to_char((select max(sj) from ta where ta.hid=h.id),'yyyy-mm-dd ') updateTime
from t_crd_housekeeper h
where h.vaild=1
8,外联
SELECT
f.id,
f.store_name,
f.vendor_name,
f.area_name,
f.store_phone,
h.realname,
h.mobile,
f.created_time
FROM
(
SELECT
a.id,
a.store_name,
c.vendor_name,
b.area_name,
a.store_phone,
a.created_time
FROM
pd_store a,
pd_vendor_area b,
pd_vendor c
WHERE
a.vendor_area_id = b.id
AND a.vendor_id = c.id
AND a.vendor_id = 1
AND b.area_type = 1
AND b.area_name LIKE '%%'
LIMIT 0,5
) f
LEFT OUTER JOIN pd_clerk g ON f.id = g.store_id
AND g.user_role = 2
LEFT OUTER JOIN pd_user h ON g.user_id = h.uid
9, 外联
SELECT
k.operater_id,
k.realname,
k.mobile,
k.pdNum,
l.operater_id,
l.realname,
l.mobile,
l.dslNum
FROM
(
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS pdNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id LIKE '202%'
GROUP BY
a.operater_id
) k
LEFT OUTER JOIN (
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS dslNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id NOT LIKE '202%'
GROUP BY
a.operater_id
) l ON k.operater_id = l.operater_id
UNION
SELECT
k.operater_id,
k.realname,
k.mobile,
k.pdNum,
l.operater_id,
l.realname,
l.mobile,
l.dslNum
FROM
(
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS pdNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id LIKE '202%'
GROUP BY
a.operater_id
) k
RIGHT OUTER JOIN (
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS dslNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id NOT LIKE '202%'
GROUP BY
a.operater_id
) l ON k.operater_id = l.operater_id;
N,其他
SELECT
b.store_name,
a.take_time,
c.realname,
CONCAT(LEFT(c.id_card,LENGTH(c.id_card)-4),'****'),
c.mobile,
(
CASE a.type_code
WHEN 'bp' THEN
'血压'
WHEN 'hr' THEN
'心率'
WHEN 'fbg' THEN
'空腹血糖'
WHEN '2hpbg' THEN
'餐后两小时血糖'
WHEN 'tc' THEN
'总胆固醇'
WHEN 'bua' THEN
'血尿酸'
WHEN 'bmi' THEN
'体质指数'
ELSE
'其他'
END
) AS type_code,
a.value1,
a.value2,
a.value3,
d.realname as clerkname,
d.mobile as clerkmobile
FROM
pd_indicator_values a,
pd_store b,
pd_user c,
pd_user d
WHERE
a.store_id = b.id
AND a.user_id = c.uid
AND a.operater_id = d.uid
AND a.store_id = 164
AND a.take_time >= '2016-09-01 00:00:00'
AND a.take_time < '2016-11-01 00:00:00';
SELECT
a.realname,
a.gender,
c.realname as clerkname,
c.mobile,
d.store_name,
b.type_code,
b.take_time,
CONCAT_WS('/',b.value1,b.value2,b.value3)
FROM
pd_user a,
pd_indicator_values b,
pd_user c,
pd_store d
WHERE
a.uid = b.user_id
AND b.operater_id = c.uid
AND b.store_id = d.id ORDER BY b.user_id ASC;
SELECT
COUNT(*)
FROM
(
SELECT
user_id,
COUNT(user_id) AS coun,
DATEDIFF(
DATE(MAX(take_time)),
DATE(MIN(take_time))
) AS days
FROM
pd_indicator_values
WHERE
take_time >= '2015-11-01 00:00:00'
AND take_time <= '2016-11-24 23:59:59'
AND vendor_id = 1
GROUP BY
user_id
HAVING
coun > 1
AND days > 1
) k;
SELECT
h.vendor_name,
h.take_time,
h.realname,
h.created_time,
h.gender,
h.birthday,
h.address,
h.mobile,
h.id_card,
h.type_code,
h.value1_status,
h.value1,
h.value2_status,
h.value2,
h.value3_status,
h.value3,
h.clerkname,
h.clerkmobile,
h.store_name,
j.realname as stoname,
j.mobile as stomobile
FROM
(
SELECT
e.vendor_name,
a.take_time,
f.created_time,
b.realname,
(
CASE b.gender
WHEN '' THEN
'女'
WHEN '' THEN
'男'
ELSE
' '
END
) AS gender,
YEAR (NOW()) - YEAR (b.birthday) AS birthday,
g.address,
b.mobile,
b.id_card,
(
CASE a.type_code
WHEN 'bp' THEN
'血压'
WHEN 'hr' THEN
'心率'
WHEN 'fbg' THEN
'空腹血糖'
WHEN '2hpbg' THEN
'餐后两小时血糖'
WHEN 'tc' THEN
'总胆固醇'
WHEN 'bua' THEN
'血尿酸'
WHEN 'bmi' THEN
'体质指数'
ELSE
'其他'
END
) AS type_code,
(
CASE a.value1_status
WHEN '' THEN
'正常'
WHEN '' THEN
'风险'
WHEN '' THEN
'危险'
WHEN '' THEN
'偏小风险'
WHEN '' THEN
'偏小危险'
ELSE
'其他'
END
) AS value1_status,
a.value1,
(
CASE a.value2_status
WHEN '' THEN
'正常'
WHEN '' THEN
'风险'
WHEN '' THEN
'危险'
WHEN '' THEN
'偏小风险'
WHEN '' THEN
'偏小危险'
ELSE
'其他'
END
) AS value2_status,
a.value2,
(
CASE a.value3_status
WHEN '' THEN
'正常'
WHEN '' THEN
'风险'
WHEN '' THEN
'危险'
WHEN '' THEN
'偏小风险'
WHEN '' THEN
'偏小危险'
ELSE
'其他'
END
) AS value3_status,
a.value3,
c.realname AS clerkname,
c.mobile AS clerkmobile,
d.store_name,
d.id,
q.cou
FROM
(
SELECT
o.user_id,
COUNT(o.user_id) AS cou
FROM
pd_indicator_values o
WHERE
o.take_time >= '2015-06-01 00:00:00'
AND o.take_time <= '2016-11-22 23:59:59'
GROUP BY
o.user_id
HAVING
cou > 2
) q,
pd_indicator_values a,
pd_user b,
pd_user c,
pd_store d,
pd_vendor e,
pd_user_vendor f,
pd_user_info g
WHERE
q.user_id = a.user_id
AND a.user_id = b.uid
AND a.operater_id = c.uid
AND a.store_id = d.id
AND a.vendor_id = e.id
AND a.user_id = f.user_id
AND a.user_id = g.user_id
AND a.take_time >= '2015-06-01 00:00:00'
AND a.take_time <= '2016-11-22 23:59:59'
) h,
pd_clerk i,
pd_user j
WHERE
h.id = i.store_id
AND i.user_role = 2
AND i.user_id = j.uid ORDER BY h.cou DESC;
1,将查询结果存入表
insert into pd_temp select * from pd_other;
2,将表数据导出xls文件最大1048576记录数
select * from pd_temp limit 1048576,364387 into outfile 'c:\\20.xls';
3,格式转换
记事本另存为ASCII格式
或
iconv -futf8 -tgb2312 -otest 21.xls 20.xls
SELECT
a.take_time AS take_time,
b.realname AS realname,
IF(b.gender=0,'女','男') AS gender,
b.mobile AS mobile,
b.id_card AS id_card,
IF(a.type_code='fbg', '空腹血糖', '餐后两小时血糖') AS type_code,
CONCAT(a.value1,'mmol/L') AS value1,
d.realname as clerkname,
d.mobile as clerkmobile,
c.store_name AS store_name
FROM
pd_indicator_values a,
pd_user b,
pd_store c,
pd_user d
WHERE
a.user_id = b.uid
AND a.operater_id = d.uid
AND a.store_id = c.id
AND a.vendor_id = 1
AND a.province_code = 520000
AND a.city_code = 520100
AND a.take_time >= '2016-08-01 00:00:00'
AND a.take_time < '2016-09-01 00:00:00'
AND (
a.type_code = 'fbg'
OR a.type_code = '2hpbg'
)
AND (
a.value1_status = 3
OR a.value1_status = 5
);
SELECT
d.id,
d.store_name,
c.realname,
c.mobile,
count(a.caller_user_id),
count(
DISTINCT (a.called_user_id) & a.begin_calltime > 0
),
count(a.begin_calltime > 0),
SUM(a.caller_duration)
FROM
pd_call_records a,
pd_clerk b,
pd_user c,
pd_store d
WHERE
a.caller_user_id = b.user_id
AND b.user_id = c.uid
AND b.store_id = d.id
AND a.created_time >= '2016-08-01 18:48:45'
GROUP BY
a.caller_user_id;
SELECT
c.realname,
c.mobile,
SUBSTRING_INDEX(c.context, '}', 1),
c.callednum,
c.callnum,
c.calltime,
d.realname,
f.store_name,
d.mobile
FROM
(
SELECT
b.realname AS realname,
b.mobile AS mobile,
SUBSTRING_INDEX(a.task_context, ':' ,- 1) AS context, IF (a.caller_duration > 0, 1, 0) AS callednum, IF (a.called_duration > 0, 1, 0) AS callnum,
IFNULL(a.called_duration, 0) AS calltime,
a.caller_user_id AS clerkid
FROM
pd_call_records a,
pd_user b
WHERE
a.called_user_id = b.uid
AND task_id > 0
) c,
pd_user d,
pd_clerk e,
pd_store f
WHERE
c.clerkid = d.uid
AND d.uid = e.user_id
AND e.store_id = f.id;
SELECT COUNT(k.user_id) from (
SELECT
a.user_id,
DATEDIFF(DATE(MAX(a.take_time)),DATE(MIN(a.take_time))) as days
FROM
pd_indicator_values a
WHERE
a.vendor_id = 12
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
GROUP BY a.user_id )k where k.days>1
邮箱联想匹配:
SELECT
a.ID,
b.USER_ID,
a.PERSON_ID,
a.TYPE,
a.MAIL,
a.CREATE_TIME,
a.UPDATE_TIME,
a.DELETE_TAG,
a.MAIN_USER_ID,
b.`NAME`,
b.AVATAR,
b.LEVEL1_GROUP_ID,
b.LEVEL2_GROUP_ID,
b.LEVEL3_GROUP_ID
FROM
t_contacts_person_mail a, t_contacts_person b
WHERE
a.PERSON_ID = b.ID
AND a.DELETE_TAG = 0 AND b.DELETE_TAG = 0 AND locate('@',a.MAIL)>0
-- 子账号
AND (b.USER_ID ='9e5687aa76b74daaae47bdbf9f453e97' OR (b.USER_ID='83fcb7323c9a47de98403be7cedb9433' AND b.IS_OPEN = 1))
-- 主账号
-- AND b.USER_ID in ('83fcb7323c9a47de98403be7cedb9433', '9e5687aa76b74daaae47bdbf9f453e97')
AND substring_index(a.MAIL, '@', 1) LIKE CONCAT('%', 'a', '%')
GROUP BY a.MAIL
ORDER BY (length(substring_index(a.MAIL, '@', 1)) - length('a')) ASC, b.IS_OPEN ASC, b.CREATE_TIME DESC
LIMIT 0,10
SQL函数的更多相关文章
- Oracle 中的sql函数以及分页
SELECT LPAD(,'*.') "LPAD example" FROM DUAL; 1.分页查询 (1)方法一:使用 between and 来实现分页 select * ...
- SQL函数说明大全
一旦成功地从表中检索出数据,就需要进一步操纵这些数据,以获得有用或有意义的结果.这些要求包括:执行计算与数学运算.转换数据.解析数值.组合值和聚合一个范围内的值等. 下表给出了T-SQL函数的类别和描 ...
- oracle(sql)基础篇系列(一)——基础select语句、常用sql函数、组函数、分组函数
花点时间整理下sql基础,温故而知新.文章的demo来自oracle自带的dept,emp,salgrade三张表.解锁scott用户,使用scott用户登录就可以看到自带的表. #使用ora ...
- [转]字符型IP地址转换成数字IP的SQL函数
使用SQL函数可以实现许多的功能,下面为您介绍的是字符型IP地址转换成数字IP的SQL函数示例,供您参考,希望对您学习SQL函数能够有所帮助. /**//*--调用示例 sele ...
- 常用的Sql 函数
常用的Sql 函数 1: replace 函数,替换字符. 语法 replace (original-string, search-string, replace-string ) 第一个参数你的字符 ...
- 常用的 SQL 函数
SQL 函数 聚合函数(针对数字列): AVG:求平均分 COINT: 计算个数 MAX: 求最大值 MIN: 求最小值 SUM: 求和 数学函数(): ABS: 绝对值 CEIL ...
- Oracle数据库--SQL函数
Oracle SQL函数 1.ASCII返回与指定的字符对应的十进制数;SQL> select ascii('A') A,ascii('a') a,ascii('0') zero,ascii( ...
- 常用的sql函数
常用的sql函数 concat('hello','world') 结果:helloworld 作用:拼接 substr('helloworld',1,5) hello ...
- ThinkPHP使用SQL函数进行查询
//SQL函数查询 $products=$pro->where(array("FIND_IN_SET('".$type."',type)",'num'=& ...
- oracle PL/SQL(procedure language/SQL)程序设计(续集)之PL/SQL函数
PL/SQL函数 examples:“ 构造一个邮件地址 v_mailing_address := v_name||CHR(10)|| ...
随机推荐
- 可爱的Python_课后习题_CDay0 时刻准备着!发布
请根据软件发布的流程和软件开发的编码规范,将读者在前面章节所写的程序修改并发 布出去.另外,可以查找下除了 epydoc 外还有哪些较好的 py 文档生成器? pydoc是Python自带的模块,主要 ...
- ibatis输入多个参数
ibatis输入多个参数 在ibatis中,会发现其输入参数只能有一个,于是当出现需要进行多个输入参数的时候,就要想点办法了,我看到的有以下两种比较好的方法能够解决这个问题1) 用String ...
- struts2:字段校验和非字段校验代码示例
一.为什么要使用struts2的validate验证框架 :使用struts2的验证框架,能够提高客户端提交的数据的安全性.通过验证,确保保存进数据库的信息是正确的 二.使用struts2的valid ...
- html标签分两种:块状元素和内联元素
块状元素一般是其它元素的容器,可以容纳内联元素和其它块状元素,独占一行,宽度和高度起作用.如div,p等标签属于块状元素. 内联元素只能容纳文本和其它内联元素,可与其它内联元素位于同一行, ...
- position
1.父集设置了relative,子集的absolute要设置top和left的值,不然父集的padding值会影响到子集的位置: #first{ width: 200px; height: 100px ...
- ASP.NET 前后台调用方法
Asp.Net中几种相似的标记符号: <%=...%>< %#...%>< %%>< %@ %>解释及用法 答: < %#... %>:是在 ...
- Openbox中指定目录打开程序
现在遇到这样的情况,在浏览器的下载中,点击在文件夹中显示, 结果这个使用系统调用的是Baobab,一款分析磁盘使用情况的软件,而不是使用目录浏览程序,例如nautilus 查询后知道,系统使用xdg- ...
- mysql索引的使用和优化
参考: http://blog.csdn.net/xluren/article/details/32746183 http://www.cnblogs.com/hustcat/archive/2009 ...
- java中常见的几种异常
算术异常类:ArithmeticExecption空指针异常类:NullPointerException类型强制转换异常:ClassCastException数组负下标异常:NegativeArray ...
- weboffice控件使用不能嵌入网页
var s = ""s += "<object id=WebOffice1 height=586 width='100%' style='LEFT: 0px; TO ...