SQL函数
1,字符串截取拼接
CONCAT(LEFT(c.id_card,LENGTH(c.id_card)-4),'****');
SUBSTRING_INDEX(c.context,'}',1);
SUBSTRING_INDEX(a.task_context,':',-1) as context;
c.mobile LIKE CONCAT('%', '${mobile}', '%')
2,Case函数
(
CASE a.type_code
WHEN 'bp' THEN
'血压'
WHEN 'hr' THEN
'心率'
WHEN 'fbg' THEN
'空腹血糖'
WHEN '2hpbg' THEN
'餐后两小时血糖'
WHEN 'tc' THEN
'总胆固醇'
WHEN 'bua' THEN
'血尿酸'
WHEN 'bmi' THEN
'体质指数'
ELSE
'其他'
END
) AS type_code
3,字符串拼接
CONCAT_WS('/',b.value1,b.value2,b.value3);
CONCAT(a.value1,'mmol/L') AS value1
4,日期加减
DATEDIFF(DATE(MAX(take_time)),DATE(MIN(take_time))) as days
5,年龄计算
YEAR (NOW()) - YEAR (b.birthday) AS birthday
6,IF函数
IF(b.gender=0,'女','男') AS gender
7,COUNT函数
count(DISTINCT(a.called_user_id) & a.begin_calltime>0)
SELECT
a.user_id,
a.realname,
(SELECT COUNT(*) from ut_pic b where b.user_id=a.user_id) as picTotal,
(SELECT COUNT(*) from ut_pic c where c.user_id=a.user_id and is_show=1) as pic,
(SELECT COUNT(*) from ut_video d where d.user_id=a.user_id) as videoTotal,
(SELECT COUNT(*) from ut_video e where e.user_id=a.user_id and is_show=1) as video
FROM
ut_user a
with ta as
(
select nvl(v.update_time,v.create_time) sj,v.housekeeper_id hid from t_crd_video v
union all
select nvl(a.update_time,a.create_time) sj,a.housekeeper_id hid from t_crd_album a
)
select
h.id ID,h.real_name realName,
(select count(1) from t_crd_album t where t.vaild=1 and t.housekeeper_id=h.id and t.is_show=1) picShow,
(select count(1) from t_crd_album t where t.vaild=1 and t.housekeeper_id=h.id) picTotal,
(select count(1) from t_crd_video v where v.vaild=1 and v.housekeeper_id=h.id and v.is_show=1 ) vidShow,
(select count(1) from t_crd_video v where v.vaild=1 and v.housekeeper_id=h.id ) vidTotal,
to_char((select max(sj) from ta where ta.hid=h.id),'yyyy-mm-dd ') updateTime
from t_crd_housekeeper h
where h.vaild=1
8,外联
SELECT
f.id,
f.store_name,
f.vendor_name,
f.area_name,
f.store_phone,
h.realname,
h.mobile,
f.created_time
FROM
(
SELECT
a.id,
a.store_name,
c.vendor_name,
b.area_name,
a.store_phone,
a.created_time
FROM
pd_store a,
pd_vendor_area b,
pd_vendor c
WHERE
a.vendor_area_id = b.id
AND a.vendor_id = c.id
AND a.vendor_id = 1
AND b.area_type = 1
AND b.area_name LIKE '%%'
LIMIT 0,5
) f
LEFT OUTER JOIN pd_clerk g ON f.id = g.store_id
AND g.user_role = 2
LEFT OUTER JOIN pd_user h ON g.user_id = h.uid
9, 外联
SELECT
k.operater_id,
k.realname,
k.mobile,
k.pdNum,
l.operater_id,
l.realname,
l.mobile,
l.dslNum
FROM
(
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS pdNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id LIKE '202%'
GROUP BY
a.operater_id
) k
LEFT OUTER JOIN (
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS dslNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id NOT LIKE '202%'
GROUP BY
a.operater_id
) l ON k.operater_id = l.operater_id
UNION
SELECT
k.operater_id,
k.realname,
k.mobile,
k.pdNum,
l.operater_id,
l.realname,
l.mobile,
l.dslNum
FROM
(
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS pdNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id LIKE '202%'
GROUP BY
a.operater_id
) k
RIGHT OUTER JOIN (
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS dslNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id NOT LIKE '202%'
GROUP BY
a.operater_id
) l ON k.operater_id = l.operater_id;

N,其他
SELECT
b.store_name,
a.take_time,
c.realname,
CONCAT(LEFT(c.id_card,LENGTH(c.id_card)-4),'****'),
c.mobile,
(
CASE a.type_code
WHEN 'bp' THEN
'血压'
WHEN 'hr' THEN
'心率'
WHEN 'fbg' THEN
'空腹血糖'
WHEN '2hpbg' THEN
'餐后两小时血糖'
WHEN 'tc' THEN
'总胆固醇'
WHEN 'bua' THEN
'血尿酸'
WHEN 'bmi' THEN
'体质指数'
ELSE
'其他'
END
) AS type_code,
a.value1,
a.value2,
a.value3,
d.realname as clerkname,
d.mobile as clerkmobile
FROM
pd_indicator_values a,
pd_store b,
pd_user c,
pd_user d
WHERE
a.store_id = b.id
AND a.user_id = c.uid
AND a.operater_id = d.uid
AND a.store_id = 164
AND a.take_time >= '2016-09-01 00:00:00'
AND a.take_time < '2016-11-01 00:00:00';
SELECT
a.realname,
a.gender,
c.realname as clerkname,
c.mobile,
d.store_name,
b.type_code,
b.take_time,
CONCAT_WS('/',b.value1,b.value2,b.value3)
FROM
pd_user a,
pd_indicator_values b,
pd_user c,
pd_store d
WHERE
a.uid = b.user_id
AND b.operater_id = c.uid
AND b.store_id = d.id ORDER BY b.user_id ASC;
SELECT
COUNT(*)
FROM
(
SELECT
user_id,
COUNT(user_id) AS coun,
DATEDIFF(
DATE(MAX(take_time)),
DATE(MIN(take_time))
) AS days
FROM
pd_indicator_values
WHERE
take_time >= '2015-11-01 00:00:00'
AND take_time <= '2016-11-24 23:59:59'
AND vendor_id = 1
GROUP BY
user_id
HAVING
coun > 1
AND days > 1
) k;
SELECT
h.vendor_name,
h.take_time,
h.realname,
h.created_time,
h.gender,
h.birthday,
h.address,
h.mobile,
h.id_card,
h.type_code,
h.value1_status,
h.value1,
h.value2_status,
h.value2,
h.value3_status,
h.value3,
h.clerkname,
h.clerkmobile,
h.store_name,
j.realname as stoname,
j.mobile as stomobile
FROM
(
SELECT
e.vendor_name,
a.take_time,
f.created_time,
b.realname,
(
CASE b.gender
WHEN '' THEN
'女'
WHEN '' THEN
'男'
ELSE
' '
END
) AS gender,
YEAR (NOW()) - YEAR (b.birthday) AS birthday,
g.address,
b.mobile,
b.id_card,
(
CASE a.type_code
WHEN 'bp' THEN
'血压'
WHEN 'hr' THEN
'心率'
WHEN 'fbg' THEN
'空腹血糖'
WHEN '2hpbg' THEN
'餐后两小时血糖'
WHEN 'tc' THEN
'总胆固醇'
WHEN 'bua' THEN
'血尿酸'
WHEN 'bmi' THEN
'体质指数'
ELSE
'其他'
END
) AS type_code,
(
CASE a.value1_status
WHEN '' THEN
'正常'
WHEN '' THEN
'风险'
WHEN '' THEN
'危险'
WHEN '' THEN
'偏小风险'
WHEN '' THEN
'偏小危险'
ELSE
'其他'
END
) AS value1_status,
a.value1,
(
CASE a.value2_status
WHEN '' THEN
'正常'
WHEN '' THEN
'风险'
WHEN '' THEN
'危险'
WHEN '' THEN
'偏小风险'
WHEN '' THEN
'偏小危险'
ELSE
'其他'
END
) AS value2_status,
a.value2,
(
CASE a.value3_status
WHEN '' THEN
'正常'
WHEN '' THEN
'风险'
WHEN '' THEN
'危险'
WHEN '' THEN
'偏小风险'
WHEN '' THEN
'偏小危险'
ELSE
'其他'
END
) AS value3_status,
a.value3,
c.realname AS clerkname,
c.mobile AS clerkmobile,
d.store_name,
d.id,
q.cou
FROM
(
SELECT
o.user_id,
COUNT(o.user_id) AS cou
FROM
pd_indicator_values o
WHERE
o.take_time >= '2015-06-01 00:00:00'
AND o.take_time <= '2016-11-22 23:59:59'
GROUP BY
o.user_id
HAVING
cou > 2
) q,
pd_indicator_values a,
pd_user b,
pd_user c,
pd_store d,
pd_vendor e,
pd_user_vendor f,
pd_user_info g
WHERE
q.user_id = a.user_id
AND a.user_id = b.uid
AND a.operater_id = c.uid
AND a.store_id = d.id
AND a.vendor_id = e.id
AND a.user_id = f.user_id
AND a.user_id = g.user_id
AND a.take_time >= '2015-06-01 00:00:00'
AND a.take_time <= '2016-11-22 23:59:59'
) h,
pd_clerk i,
pd_user j
WHERE
h.id = i.store_id
AND i.user_role = 2
AND i.user_id = j.uid ORDER BY h.cou DESC;
1,将查询结果存入表
insert into pd_temp select * from pd_other;
2,将表数据导出xls文件最大1048576记录数
select * from pd_temp limit 1048576,364387 into outfile 'c:\\20.xls';
3,格式转换
记事本另存为ASCII格式
或
iconv -futf8 -tgb2312 -otest 21.xls 20.xls
SELECT
a.take_time AS take_time,
b.realname AS realname,
IF(b.gender=0,'女','男') AS gender,
b.mobile AS mobile,
b.id_card AS id_card,
IF(a.type_code='fbg', '空腹血糖', '餐后两小时血糖') AS type_code,
CONCAT(a.value1,'mmol/L') AS value1,
d.realname as clerkname,
d.mobile as clerkmobile,
c.store_name AS store_name
FROM
pd_indicator_values a,
pd_user b,
pd_store c,
pd_user d
WHERE
a.user_id = b.uid
AND a.operater_id = d.uid
AND a.store_id = c.id
AND a.vendor_id = 1
AND a.province_code = 520000
AND a.city_code = 520100
AND a.take_time >= '2016-08-01 00:00:00'
AND a.take_time < '2016-09-01 00:00:00'
AND (
a.type_code = 'fbg'
OR a.type_code = '2hpbg'
)
AND (
a.value1_status = 3
OR a.value1_status = 5
);
SELECT
d.id,
d.store_name,
c.realname,
c.mobile,
count(a.caller_user_id),
count(
DISTINCT (a.called_user_id) & a.begin_calltime > 0
),
count(a.begin_calltime > 0),
SUM(a.caller_duration)
FROM
pd_call_records a,
pd_clerk b,
pd_user c,
pd_store d
WHERE
a.caller_user_id = b.user_id
AND b.user_id = c.uid
AND b.store_id = d.id
AND a.created_time >= '2016-08-01 18:48:45'
GROUP BY
a.caller_user_id;
SELECT
c.realname,
c.mobile,
SUBSTRING_INDEX(c.context, '}', 1),
c.callednum,
c.callnum,
c.calltime,
d.realname,
f.store_name,
d.mobile
FROM
(
SELECT
b.realname AS realname,
b.mobile AS mobile,
SUBSTRING_INDEX(a.task_context, ':' ,- 1) AS context, IF (a.caller_duration > 0, 1, 0) AS callednum, IF (a.called_duration > 0, 1, 0) AS callnum,
IFNULL(a.called_duration, 0) AS calltime,
a.caller_user_id AS clerkid
FROM
pd_call_records a,
pd_user b
WHERE
a.called_user_id = b.uid
AND task_id > 0
) c,
pd_user d,
pd_clerk e,
pd_store f
WHERE
c.clerkid = d.uid
AND d.uid = e.user_id
AND e.store_id = f.id;
SELECT COUNT(k.user_id) from (
SELECT
a.user_id,
DATEDIFF(DATE(MAX(a.take_time)),DATE(MIN(a.take_time))) as days
FROM
pd_indicator_values a
WHERE
a.vendor_id = 12
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
GROUP BY a.user_id )k where k.days>1
邮箱联想匹配:
SELECT
a.ID,
b.USER_ID,
a.PERSON_ID,
a.TYPE,
a.MAIL,
a.CREATE_TIME,
a.UPDATE_TIME,
a.DELETE_TAG,
a.MAIN_USER_ID,
b.`NAME`,
b.AVATAR,
b.LEVEL1_GROUP_ID,
b.LEVEL2_GROUP_ID,
b.LEVEL3_GROUP_ID
FROM
t_contacts_person_mail a, t_contacts_person b
WHERE
a.PERSON_ID = b.ID
AND a.DELETE_TAG = 0 AND b.DELETE_TAG = 0 AND locate('@',a.MAIL)>0
-- 子账号
AND (b.USER_ID ='9e5687aa76b74daaae47bdbf9f453e97' OR (b.USER_ID='83fcb7323c9a47de98403be7cedb9433' AND b.IS_OPEN = 1))
-- 主账号
-- AND b.USER_ID in ('83fcb7323c9a47de98403be7cedb9433', '9e5687aa76b74daaae47bdbf9f453e97')
AND substring_index(a.MAIL, '@', 1) LIKE CONCAT('%', 'a', '%')
GROUP BY a.MAIL
ORDER BY (length(substring_index(a.MAIL, '@', 1)) - length('a')) ASC, b.IS_OPEN ASC, b.CREATE_TIME DESC
LIMIT 0,10
SQL函数的更多相关文章
- Oracle 中的sql函数以及分页
SELECT LPAD(,'*.') "LPAD example" FROM DUAL; 1.分页查询 (1)方法一:使用 between and 来实现分页 select * ...
- SQL函数说明大全
一旦成功地从表中检索出数据,就需要进一步操纵这些数据,以获得有用或有意义的结果.这些要求包括:执行计算与数学运算.转换数据.解析数值.组合值和聚合一个范围内的值等. 下表给出了T-SQL函数的类别和描 ...
- oracle(sql)基础篇系列(一)——基础select语句、常用sql函数、组函数、分组函数
花点时间整理下sql基础,温故而知新.文章的demo来自oracle自带的dept,emp,salgrade三张表.解锁scott用户,使用scott用户登录就可以看到自带的表. #使用ora ...
- [转]字符型IP地址转换成数字IP的SQL函数
使用SQL函数可以实现许多的功能,下面为您介绍的是字符型IP地址转换成数字IP的SQL函数示例,供您参考,希望对您学习SQL函数能够有所帮助. /**//*--调用示例 sele ...
- 常用的Sql 函数
常用的Sql 函数 1: replace 函数,替换字符. 语法 replace (original-string, search-string, replace-string ) 第一个参数你的字符 ...
- 常用的 SQL 函数
SQL 函数 聚合函数(针对数字列): AVG:求平均分 COINT: 计算个数 MAX: 求最大值 MIN: 求最小值 SUM: 求和 数学函数(): ABS: 绝对值 CEIL ...
- Oracle数据库--SQL函数
Oracle SQL函数 1.ASCII返回与指定的字符对应的十进制数;SQL> select ascii('A') A,ascii('a') a,ascii('0') zero,ascii( ...
- 常用的sql函数
常用的sql函数 concat('hello','world') 结果:helloworld 作用:拼接 substr('helloworld',1,5) hello ...
- ThinkPHP使用SQL函数进行查询
//SQL函数查询 $products=$pro->where(array("FIND_IN_SET('".$type."',type)",'num'=& ...
- oracle PL/SQL(procedure language/SQL)程序设计(续集)之PL/SQL函数
PL/SQL函数 examples:“ 构造一个邮件地址 v_mailing_address := v_name||CHR(10)|| ...
随机推荐
- 跟着思维导图学习javascript
1.javascript 变量 2.javascript 运算符 3.javascript 数组 4.javascript 流程语句 5.javascript字符串函数 6.javascript 函数 ...
- Mongodb在Linux下的安装和启动和配置
第一步:下载mongodb安装包,下载版本:2.0.2-rc2 下载链接: http://fastdl.mongodb.org/linux/mongodb-linux-i686-2.0.1.tgz 第 ...
- 也谈微信小程序
小程序是一种不需要下载安装即可使用的应用,它实现了应用"触手可及"的梦想,用户扫一扫或者搜一下即可打开应用.也体现了"用完即走"的理念,用户不关心是否安装太 ...
- Visual Studio配色方案
Eclipse开源工具和VS在诸多方面真的是差距非常大,无奈Java编程,使用VS非常麻烦.所以只能选择Eclipse 但是Eclipse的系统配色,又实在是不舒服,于是抽时间,从VS上抠了一份默认的 ...
- How to add taxonomy element to a summary view?
[re: Orchard CMS] This caused me scratching my head for days and now I can even feel it's bleeding. ...
- 详解:数据库名、实例名、ORACLE_SID、数据库域名、全局数据库名、服务名及手工脚本创建oracle数据库
数据库名.实例名.数据库域名.全局数据库名.服务名 , 这是几个令很多初学者容易混淆的概念.相信很多初学者都与我一样被标题上这些个概念搞得一头雾水.我们现在就来把它们弄个明白. 一.数据库名 什么是数 ...
- 关于获取web应用的文件路径的注意事项
今天在把数据写入文件时遇到了一个问题,指定的文件获取不到.一开始是这样的 URL url = XXX.class.getClassLoader().getResource(fileName);File ...
- Android学习计划
书目 疯狂Android讲义 Android开发艺术探索 Android群英传 Android 源码设计模式解析与实战 Android内核剖析 深入理解 Android自动化测试 代码 信念 坚持.坚 ...
- 最常用的截取函数有left,right,substring
最常用的截取函数有left,right,substring 1.LEFT ( character_expression , integer_expression ) 返回从字符串左边开始指定个数的字符 ...
- Core Data 使用映射模型
Core Data 使用映射模型 如果新版本的模型存在较复杂的更改,可以创建一个映射模型,通过该模型指定源模型如何映射到目标模型. 创建映射模型,新建File, Core Data 选择Mappin ...