SQL函数
1,字符串截取拼接
CONCAT(LEFT(c.id_card,LENGTH(c.id_card)-4),'****');
SUBSTRING_INDEX(c.context,'}',1);
SUBSTRING_INDEX(a.task_context,':',-1) as context;
c.mobile LIKE CONCAT('%', '${mobile}', '%')
2,Case函数
(
CASE a.type_code
WHEN 'bp' THEN
'血压'
WHEN 'hr' THEN
'心率'
WHEN 'fbg' THEN
'空腹血糖'
WHEN '2hpbg' THEN
'餐后两小时血糖'
WHEN 'tc' THEN
'总胆固醇'
WHEN 'bua' THEN
'血尿酸'
WHEN 'bmi' THEN
'体质指数'
ELSE
'其他'
END
) AS type_code
3,字符串拼接
CONCAT_WS('/',b.value1,b.value2,b.value3);
CONCAT(a.value1,'mmol/L') AS value1
4,日期加减
DATEDIFF(DATE(MAX(take_time)),DATE(MIN(take_time))) as days
5,年龄计算
YEAR (NOW()) - YEAR (b.birthday) AS birthday
6,IF函数
IF(b.gender=0,'女','男') AS gender
7,COUNT函数
count(DISTINCT(a.called_user_id) & a.begin_calltime>0)
SELECT
a.user_id,
a.realname,
(SELECT COUNT(*) from ut_pic b where b.user_id=a.user_id) as picTotal,
(SELECT COUNT(*) from ut_pic c where c.user_id=a.user_id and is_show=1) as pic,
(SELECT COUNT(*) from ut_video d where d.user_id=a.user_id) as videoTotal,
(SELECT COUNT(*) from ut_video e where e.user_id=a.user_id and is_show=1) as video
FROM
ut_user a
with ta as
(
select nvl(v.update_time,v.create_time) sj,v.housekeeper_id hid from t_crd_video v
union all
select nvl(a.update_time,a.create_time) sj,a.housekeeper_id hid from t_crd_album a
)
select
h.id ID,h.real_name realName,
(select count(1) from t_crd_album t where t.vaild=1 and t.housekeeper_id=h.id and t.is_show=1) picShow,
(select count(1) from t_crd_album t where t.vaild=1 and t.housekeeper_id=h.id) picTotal,
(select count(1) from t_crd_video v where v.vaild=1 and v.housekeeper_id=h.id and v.is_show=1 ) vidShow,
(select count(1) from t_crd_video v where v.vaild=1 and v.housekeeper_id=h.id ) vidTotal,
to_char((select max(sj) from ta where ta.hid=h.id),'yyyy-mm-dd ') updateTime
from t_crd_housekeeper h
where h.vaild=1
8,外联
SELECT
f.id,
f.store_name,
f.vendor_name,
f.area_name,
f.store_phone,
h.realname,
h.mobile,
f.created_time
FROM
(
SELECT
a.id,
a.store_name,
c.vendor_name,
b.area_name,
a.store_phone,
a.created_time
FROM
pd_store a,
pd_vendor_area b,
pd_vendor c
WHERE
a.vendor_area_id = b.id
AND a.vendor_id = c.id
AND a.vendor_id = 1
AND b.area_type = 1
AND b.area_name LIKE '%%'
LIMIT 0,5
) f
LEFT OUTER JOIN pd_clerk g ON f.id = g.store_id
AND g.user_role = 2
LEFT OUTER JOIN pd_user h ON g.user_id = h.uid
9, 外联
SELECT
k.operater_id,
k.realname,
k.mobile,
k.pdNum,
l.operater_id,
l.realname,
l.mobile,
l.dslNum
FROM
(
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS pdNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id LIKE '202%'
GROUP BY
a.operater_id
) k
LEFT OUTER JOIN (
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS dslNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id NOT LIKE '202%'
GROUP BY
a.operater_id
) l ON k.operater_id = l.operater_id
UNION
SELECT
k.operater_id,
k.realname,
k.mobile,
k.pdNum,
l.operater_id,
l.realname,
l.mobile,
l.dslNum
FROM
(
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS pdNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id LIKE '202%'
GROUP BY
a.operater_id
) k
RIGHT OUTER JOIN (
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS dslNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id NOT LIKE '202%'
GROUP BY
a.operater_id
) l ON k.operater_id = l.operater_id;

N,其他
SELECT
b.store_name,
a.take_time,
c.realname,
CONCAT(LEFT(c.id_card,LENGTH(c.id_card)-4),'****'),
c.mobile,
(
CASE a.type_code
WHEN 'bp' THEN
'血压'
WHEN 'hr' THEN
'心率'
WHEN 'fbg' THEN
'空腹血糖'
WHEN '2hpbg' THEN
'餐后两小时血糖'
WHEN 'tc' THEN
'总胆固醇'
WHEN 'bua' THEN
'血尿酸'
WHEN 'bmi' THEN
'体质指数'
ELSE
'其他'
END
) AS type_code,
a.value1,
a.value2,
a.value3,
d.realname as clerkname,
d.mobile as clerkmobile
FROM
pd_indicator_values a,
pd_store b,
pd_user c,
pd_user d
WHERE
a.store_id = b.id
AND a.user_id = c.uid
AND a.operater_id = d.uid
AND a.store_id = 164
AND a.take_time >= '2016-09-01 00:00:00'
AND a.take_time < '2016-11-01 00:00:00';
SELECT
a.realname,
a.gender,
c.realname as clerkname,
c.mobile,
d.store_name,
b.type_code,
b.take_time,
CONCAT_WS('/',b.value1,b.value2,b.value3)
FROM
pd_user a,
pd_indicator_values b,
pd_user c,
pd_store d
WHERE
a.uid = b.user_id
AND b.operater_id = c.uid
AND b.store_id = d.id ORDER BY b.user_id ASC;
SELECT
COUNT(*)
FROM
(
SELECT
user_id,
COUNT(user_id) AS coun,
DATEDIFF(
DATE(MAX(take_time)),
DATE(MIN(take_time))
) AS days
FROM
pd_indicator_values
WHERE
take_time >= '2015-11-01 00:00:00'
AND take_time <= '2016-11-24 23:59:59'
AND vendor_id = 1
GROUP BY
user_id
HAVING
coun > 1
AND days > 1
) k;
SELECT
h.vendor_name,
h.take_time,
h.realname,
h.created_time,
h.gender,
h.birthday,
h.address,
h.mobile,
h.id_card,
h.type_code,
h.value1_status,
h.value1,
h.value2_status,
h.value2,
h.value3_status,
h.value3,
h.clerkname,
h.clerkmobile,
h.store_name,
j.realname as stoname,
j.mobile as stomobile
FROM
(
SELECT
e.vendor_name,
a.take_time,
f.created_time,
b.realname,
(
CASE b.gender
WHEN '' THEN
'女'
WHEN '' THEN
'男'
ELSE
' '
END
) AS gender,
YEAR (NOW()) - YEAR (b.birthday) AS birthday,
g.address,
b.mobile,
b.id_card,
(
CASE a.type_code
WHEN 'bp' THEN
'血压'
WHEN 'hr' THEN
'心率'
WHEN 'fbg' THEN
'空腹血糖'
WHEN '2hpbg' THEN
'餐后两小时血糖'
WHEN 'tc' THEN
'总胆固醇'
WHEN 'bua' THEN
'血尿酸'
WHEN 'bmi' THEN
'体质指数'
ELSE
'其他'
END
) AS type_code,
(
CASE a.value1_status
WHEN '' THEN
'正常'
WHEN '' THEN
'风险'
WHEN '' THEN
'危险'
WHEN '' THEN
'偏小风险'
WHEN '' THEN
'偏小危险'
ELSE
'其他'
END
) AS value1_status,
a.value1,
(
CASE a.value2_status
WHEN '' THEN
'正常'
WHEN '' THEN
'风险'
WHEN '' THEN
'危险'
WHEN '' THEN
'偏小风险'
WHEN '' THEN
'偏小危险'
ELSE
'其他'
END
) AS value2_status,
a.value2,
(
CASE a.value3_status
WHEN '' THEN
'正常'
WHEN '' THEN
'风险'
WHEN '' THEN
'危险'
WHEN '' THEN
'偏小风险'
WHEN '' THEN
'偏小危险'
ELSE
'其他'
END
) AS value3_status,
a.value3,
c.realname AS clerkname,
c.mobile AS clerkmobile,
d.store_name,
d.id,
q.cou
FROM
(
SELECT
o.user_id,
COUNT(o.user_id) AS cou
FROM
pd_indicator_values o
WHERE
o.take_time >= '2015-06-01 00:00:00'
AND o.take_time <= '2016-11-22 23:59:59'
GROUP BY
o.user_id
HAVING
cou > 2
) q,
pd_indicator_values a,
pd_user b,
pd_user c,
pd_store d,
pd_vendor e,
pd_user_vendor f,
pd_user_info g
WHERE
q.user_id = a.user_id
AND a.user_id = b.uid
AND a.operater_id = c.uid
AND a.store_id = d.id
AND a.vendor_id = e.id
AND a.user_id = f.user_id
AND a.user_id = g.user_id
AND a.take_time >= '2015-06-01 00:00:00'
AND a.take_time <= '2016-11-22 23:59:59'
) h,
pd_clerk i,
pd_user j
WHERE
h.id = i.store_id
AND i.user_role = 2
AND i.user_id = j.uid ORDER BY h.cou DESC;
1,将查询结果存入表
insert into pd_temp select * from pd_other;
2,将表数据导出xls文件最大1048576记录数
select * from pd_temp limit 1048576,364387 into outfile 'c:\\20.xls';
3,格式转换
记事本另存为ASCII格式
或
iconv -futf8 -tgb2312 -otest 21.xls 20.xls
SELECT
a.take_time AS take_time,
b.realname AS realname,
IF(b.gender=0,'女','男') AS gender,
b.mobile AS mobile,
b.id_card AS id_card,
IF(a.type_code='fbg', '空腹血糖', '餐后两小时血糖') AS type_code,
CONCAT(a.value1,'mmol/L') AS value1,
d.realname as clerkname,
d.mobile as clerkmobile,
c.store_name AS store_name
FROM
pd_indicator_values a,
pd_user b,
pd_store c,
pd_user d
WHERE
a.user_id = b.uid
AND a.operater_id = d.uid
AND a.store_id = c.id
AND a.vendor_id = 1
AND a.province_code = 520000
AND a.city_code = 520100
AND a.take_time >= '2016-08-01 00:00:00'
AND a.take_time < '2016-09-01 00:00:00'
AND (
a.type_code = 'fbg'
OR a.type_code = '2hpbg'
)
AND (
a.value1_status = 3
OR a.value1_status = 5
);
SELECT
d.id,
d.store_name,
c.realname,
c.mobile,
count(a.caller_user_id),
count(
DISTINCT (a.called_user_id) & a.begin_calltime > 0
),
count(a.begin_calltime > 0),
SUM(a.caller_duration)
FROM
pd_call_records a,
pd_clerk b,
pd_user c,
pd_store d
WHERE
a.caller_user_id = b.user_id
AND b.user_id = c.uid
AND b.store_id = d.id
AND a.created_time >= '2016-08-01 18:48:45'
GROUP BY
a.caller_user_id;
SELECT
c.realname,
c.mobile,
SUBSTRING_INDEX(c.context, '}', 1),
c.callednum,
c.callnum,
c.calltime,
d.realname,
f.store_name,
d.mobile
FROM
(
SELECT
b.realname AS realname,
b.mobile AS mobile,
SUBSTRING_INDEX(a.task_context, ':' ,- 1) AS context, IF (a.caller_duration > 0, 1, 0) AS callednum, IF (a.called_duration > 0, 1, 0) AS callnum,
IFNULL(a.called_duration, 0) AS calltime,
a.caller_user_id AS clerkid
FROM
pd_call_records a,
pd_user b
WHERE
a.called_user_id = b.uid
AND task_id > 0
) c,
pd_user d,
pd_clerk e,
pd_store f
WHERE
c.clerkid = d.uid
AND d.uid = e.user_id
AND e.store_id = f.id;
SELECT COUNT(k.user_id) from (
SELECT
a.user_id,
DATEDIFF(DATE(MAX(a.take_time)),DATE(MIN(a.take_time))) as days
FROM
pd_indicator_values a
WHERE
a.vendor_id = 12
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
GROUP BY a.user_id )k where k.days>1
邮箱联想匹配:
SELECT
a.ID,
b.USER_ID,
a.PERSON_ID,
a.TYPE,
a.MAIL,
a.CREATE_TIME,
a.UPDATE_TIME,
a.DELETE_TAG,
a.MAIN_USER_ID,
b.`NAME`,
b.AVATAR,
b.LEVEL1_GROUP_ID,
b.LEVEL2_GROUP_ID,
b.LEVEL3_GROUP_ID
FROM
t_contacts_person_mail a, t_contacts_person b
WHERE
a.PERSON_ID = b.ID
AND a.DELETE_TAG = 0 AND b.DELETE_TAG = 0 AND locate('@',a.MAIL)>0
-- 子账号
AND (b.USER_ID ='9e5687aa76b74daaae47bdbf9f453e97' OR (b.USER_ID='83fcb7323c9a47de98403be7cedb9433' AND b.IS_OPEN = 1))
-- 主账号
-- AND b.USER_ID in ('83fcb7323c9a47de98403be7cedb9433', '9e5687aa76b74daaae47bdbf9f453e97')
AND substring_index(a.MAIL, '@', 1) LIKE CONCAT('%', 'a', '%')
GROUP BY a.MAIL
ORDER BY (length(substring_index(a.MAIL, '@', 1)) - length('a')) ASC, b.IS_OPEN ASC, b.CREATE_TIME DESC
LIMIT 0,10
SQL函数的更多相关文章
- Oracle 中的sql函数以及分页
SELECT LPAD(,'*.') "LPAD example" FROM DUAL; 1.分页查询 (1)方法一:使用 between and 来实现分页 select * ...
- SQL函数说明大全
一旦成功地从表中检索出数据,就需要进一步操纵这些数据,以获得有用或有意义的结果.这些要求包括:执行计算与数学运算.转换数据.解析数值.组合值和聚合一个范围内的值等. 下表给出了T-SQL函数的类别和描 ...
- oracle(sql)基础篇系列(一)——基础select语句、常用sql函数、组函数、分组函数
花点时间整理下sql基础,温故而知新.文章的demo来自oracle自带的dept,emp,salgrade三张表.解锁scott用户,使用scott用户登录就可以看到自带的表. #使用ora ...
- [转]字符型IP地址转换成数字IP的SQL函数
使用SQL函数可以实现许多的功能,下面为您介绍的是字符型IP地址转换成数字IP的SQL函数示例,供您参考,希望对您学习SQL函数能够有所帮助. /**//*--调用示例 sele ...
- 常用的Sql 函数
常用的Sql 函数 1: replace 函数,替换字符. 语法 replace (original-string, search-string, replace-string ) 第一个参数你的字符 ...
- 常用的 SQL 函数
SQL 函数 聚合函数(针对数字列): AVG:求平均分 COINT: 计算个数 MAX: 求最大值 MIN: 求最小值 SUM: 求和 数学函数(): ABS: 绝对值 CEIL ...
- Oracle数据库--SQL函数
Oracle SQL函数 1.ASCII返回与指定的字符对应的十进制数;SQL> select ascii('A') A,ascii('a') a,ascii('0') zero,ascii( ...
- 常用的sql函数
常用的sql函数 concat('hello','world') 结果:helloworld 作用:拼接 substr('helloworld',1,5) hello ...
- ThinkPHP使用SQL函数进行查询
//SQL函数查询 $products=$pro->where(array("FIND_IN_SET('".$type."',type)",'num'=& ...
- oracle PL/SQL(procedure language/SQL)程序设计(续集)之PL/SQL函数
PL/SQL函数 examples:“ 构造一个邮件地址 v_mailing_address := v_name||CHR(10)|| ...
随机推荐
- Ubuntu 汉化时ubuntu software database is broken错误解决
关于Ubuntu 汉化时的错误解决:按照网上的方法没有解决 最后 删掉thunderbird mail .这个软件,顺利解决!! 错误:thunderbird-locale-en: Depends: ...
- iOS获取当前AppStore版本号与更新
- (void)checkUpdateWithAppID:(NSString *)appID success:(void (^)(NSDictionary *resultDic , BOOL isNe ...
- input固定在底部
// input固定在底部//isFocusing获取焦点:true 失去焦点:false _onTouchInput(isFocusing){ this.phone_width = screen.w ...
- 关于JS嵌套点击事件的问题。
$().click() 是点击命令$().click(function(){代码}) 是绑定click事件,并不会直接运行.所以在嵌套的时候就有可能出现重复绑定的问题.下面是使用jsonp跨站访问代码 ...
- leetcode pow(x,n)实现
题目描述: 自己实现pow(double x, int n)方法 实现思路: 考虑位运算.考虑n的二进制表示形式,以n=51(110011)为例,x^51 = x^1*x^2*x^16*x^32,因此 ...
- com.caucho.hessian.io.HessianProtocolException: is unknown code 解决方案
问题: Cannot access Hessian remote service at [http://....../remote/syllabusService]; nested exception ...
- Hdu 1052 Tian Ji -- The Horse Racing
Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- [C#开发小技巧]解决WinForm控件TabControl闪烁问题
在用C#开发WinForm程序时,常发现TabControl出现严重的闪烁问题,这主要是由于TabControl控件在实现时会绘制默认的窗口背景.其实以下一段简单的代码可以有效的缓解该问题的发生.这就 ...
- 优化 bulk insert
https://www.simple-talk.com/sql/learn-sql-server/bulk-inserts-via-tsql-in-sql-server/
- C# socket通信
最近在研究socket,今天看到很好的一篇关于socket通信的文章,故收藏了,慢慢琢磨. 我们在讲解Socket编程前,先看几个和Socket编程紧密相关的概念: 1.TCP/IP层次模型 当然这里 ...