Dataset: MSRA A&B are introduced in this paper.

A conditional Random Field based method was proposed as

where 

with K features contributing to the first term and a pairwise features being the second.

The pairwise is learning-free.

a_x is the label of pixel x indicating whether it is salient, d_(x, x') is the L2 norm of the color difference. beta is a robust parameter that weights the color contrast., where <.> is the expectation operator.

NOW let me introduce the three features used in the first term of the obove equation(E(A|I)) that are allowed for learning. The inference detail of learning process can be found in the original paper and is excluded in this blog.

1. Multi-scale contrast

where I^l is the lth-level image in the pyramid and the number of pyramid levels L is 6. N(x) is a 9*9 window. The feature map is normalized to [0,1]

2. Center-surround histogram

We measure the distance between two rectangles R(the center area) and R_s(the surrounding rectangle, with the same area of R) in RGB color space.

By varying rectangle size([0.1,0.7]*min(w,h)) and aspect ratios({0.5,0.75,1.0,1.5,2.0}), we find the most distinct rectangle R^*(x) centered at each pixel x.

Then the center-surround histogram feature f_h(x,I) is defined as a sum of spatially weighted disances:

3. Color spatial-distribution

The wider a color is distributed in the image, the less possible a salient object contains this color.

First all colors in the image are represented by GMMs, thus each pixel is assigned to a color component with a probability.

Then the horizontal and vertical variance are calculated respectively and summed up as the color variance. This variance is then used as a weight to get a weighted sum and the final spatial-variance feature is obtained.

(Pictures are alwayse pasted unsuccessfully, so please turn to the author's paper when you need the detailed equations.)

CVPR 2007 Learning to detect a salient object的更多相关文章

  1. (不断更新)关于显著性检测的调研-Salient Object Detection: A Survey

    <Salient Object Detection: A Survey>作者:Ali Borji.Ming-Ming Cheng.Huaizu Jiang and Jia Li 基本按照文 ...

  2. PaperNotes Instance-Level Salient Object Segmentation

    title: PaperNotes Instance-Level Salient Object Segmentation comments: true date: 2017-12-20 13:53:1 ...

  3. 论文笔记:Learning Dynamic Memory Networks for Object Tracking

    Learning Dynamic Memory Networks for Object Tracking  ECCV 2018Updated on 2018-08-05 16:36:30 Paper: ...

  4. [论文理解]MetaAnchor: Learning to Detect Objects with Customized Anchors

    MetaAnchor: Learning to Detect Objects with Customized Anchors Intro 本文我其实看了几遍也没看懂,看了meta以为是一个很高大上的东 ...

  5. Minimum Barrier Salient Object Detection at 80 FPS 论文阅读笔记

    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...

  6. Image Processing and Analysis_8_Edge Detection:Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues ——2004

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  7. How to Detect and Track Object With OpenCV

    http://www.intorobotics.com/how-to-detect-and-track-object-with-opencv/

  8. 论文阅读:EGNet: Edge Guidance Network for Salient Object Detection

    论文地址:http://openaccess.thecvf.com/content_ICCV_2019/papers/Zhao_EGNet_Edge_Guidance_Network_for_Sali ...

  9. paper 27 :图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)

    1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual ...

随机推荐

  1. XFire最佳实践

    前言:XFire是新一代WebService框架,同时也支持与Spring集成,帮助我们方便快速地在Spring框架中开发WebService应用. 本节主要介绍XFire+Spring集成的2种常用 ...

  2. [ZZ] Equal Error Rate (EER)

    这篇博客很全面 http://www.cnblogs.com/cdeng/p/3471527.html ROC曲线 1.混淆矩阵(confusion matrix) 针对预测值和真实值之间的关系,我们 ...

  3. jq插件的传值

    因插件方式写的少,先慢慢记录. 默认的参数值 jQuery.fn.shadow =function(options){ var defaults = { slices : 5, opacity : 0 ...

  4. fMRI数据分析处理原理及方法(转载)

    原文地址:http://www.cnblogs.com/minks/p/4889497.html 近年来,血氧水平依赖性磁共振脑功能成像(Blood oxygenation level-depende ...

  5. OAF_开发系列15_实现OAF组件重用和继承(案例)

    20150717 Created By BaoXinjian

  6. Winform软件,不要在线程里操作UI

    对于Winform软件,不要在线程里操作UI,不要相信:StartForm.CheckForIllegalCrossThreadCalls = false; 于是,把所有的代码都改成主线程委托调用的方 ...

  7. java byte&0xFF

    做串口端口通讯时,数据都是以byte类型发送的 普通的byte范围是-128-127,而java的byte范围是0-255 因此将数据的byte转成java的byte时,需要与0xff(1111111 ...

  8. 使用Dapper读取Oracle多个结果集

    Dapper对SQL Server支持很好,但对于Oracle有些用法不一样,需要自己进行特殊处理. 1.首先要自定义一个Oracle参数类 public class OracleDynamicPar ...

  9. 尚学堂Spring视频教程(三):Spring Core中的其他特性

    集合装配   如果bean中有一些集合属性,配置文件的配置如下 package com.bjsxt.dao.impl; import java.util.List; import java.util. ...

  10. Servers

    Servers¶ Server interface. class novaclient.v1_1.servers.Server(manager, info, loaded=False) Bases: ...