POJ1741:Tree
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 29574   Accepted: 9915

Description

Give a tree with n vertices,each edge has a length(positive integer less than 1001). 
Define dist(u,v)=The min distance between node u and v. 
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k. 
Write a program that will count how many pairs which are valid for a given tree. 

Input

The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l. 
The last test case is followed by two zeros. 

Output

For each test case output the answer on a single line.

Sample Input

5 4
1 2 3
1 3 1
1 4 2
3 5 1
0 0

Sample Output

8

Source

求树上路径距离小于等于k的条数。

点分治即是将树拆开,dfs处理每棵子树的过程。每次找到当前子树的重心,从重心开始分治(即是放弃父亲,不再管之前的祖先。

这道题可以用容斥计算贡献。先统计出当前整棵树的答案,减去每棵子树重复计算的不成立的答案。【注意】这里的答案都是指经过当前树的根节点的路径。

如图,如果k是4,,直接统计子树1的答案,会把1到3和1到4这条路径统计进去,而这是不成立的,所以在统计子树2多余答案时,先把1到2这条边权加进2的dis,再统计子树2中满足条件的点对,减去即可。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std; int bal, asize, sum, n, k, ans; int tov[], nex[], h[], stot, w[]; void add ( int u, int v, int s ) {
tov[++stot] = v;
w[stot] = s;
nex[stot] = h[u];
h[u] = stot;
} int siz[], vis[]; void find_root ( int u, int f ) {
siz[u] = ;
int res = ;
for ( int i = h[u]; i; i = nex[i] ) {
int v = tov[i];
if ( v == f || vis[v] ) continue;
find_root ( v, u );
siz[u] += siz[v];
res = max ( res, siz[v] );
}
res = max ( res, sum - siz[u] );
if ( res < asize ) {
asize = res, bal = u;
}
} int dep[], dis[]; void get_dep ( int u, int f ) {
dep[++dep[]] = dis[u];
siz[u] = ;
for ( int i = h[u]; i; i = nex[i] ) {
int v = tov[i];
if ( v == f || vis[v] ) continue;
dis[v] = dis[u] + w[i];
get_dep ( v, u );
siz[u] += siz[v];
}
} int cal ( int u, int now ) {
dis[u] = now; dep[] = ;
get_dep ( u, );
sort ( dep + , dep + dep[] + );
int tmp = , l = , r = dep[];
while ( l < r ) {
if ( dep[l] + dep[r] <= k ) {
tmp += r - l; l ++;
} else r --;
}
return tmp;
} void work ( int u ) {
ans += cal ( u, );
vis[u] = ;
for ( int i = h[u]; i; i = nex[i] ) {
int v = tov[i];
if ( vis[v] ) continue;
ans -= cal ( v, w[i] );
sum = siz[v];
asize = 0x3f3f3f3f;
find_root ( v, u );
work ( bal );
}
} int main ( ) {
while ( scanf ( "%d%d", &n, &k ) == ) {
if ( n == && k == ) break;
asize = 0x3f3f3f3f;
stot = ; ans = ;
memset ( h, , sizeof ( h ) );
memset ( dis, , sizeof ( dis ) );
memset ( vis, , sizeof ( vis ) );
for ( int i = ; i < n; i ++ ) {
int a, b, c;
scanf ( "%d%d%d", &a, &b, &c );
add ( a, b, c );
add ( b, a, c );
}
sum = n;
find_root ( , );
work ( bal );
printf ( "%d\n", ans );
}
return ;
}

洛谷P3806: 【模板】点分治1

题目背景

感谢hzwer的点分治互测。

题目描述

给定一棵有n个点的树

询问树上距离为k的点对是否存在。

输入输出格式

输入格式:

n,m 接下来n-1条边a,b,c描述a到b有一条长度为c的路径

接下来m行每行询问一个K

输出格式:

对于每个K每行输出一个答案,存在输出“AYE”,否则输出”NAY”(不包含引号)

输入输出样例

输入样例#1: 复制

2 1
1 2 2
2
输出样例#1: 复制

AYE

说明

对于30%的数据n<=100

对于60%的数据n<=1000,m<=50

对于100%的数据n<=10000,m<=100,c<=1000,K<=10000000

这道题和上一道实质一样,不过我换了种写法。在统计当前树答案时,进入每棵子树,先把这棵子树的答案与之前计算过的子树答案(exist)进行比对,如果可以就更新答案,再更新exist数组,这样可以保证不会出现上面图示情况,因为计算当前子树时,不会出现子树内部互相更新的情况。

#include<iostream>
#include<cstdio>
using namespace std; int n, m, qus[]; int stot, tov[], nex[], h[], w[];
void add ( int u, int v, int s ) {
tov[++stot] = v;
w[stot] = s;
nex[stot] = h[u];
h[u] = stot;
} int siz[], asize, size, root, vis[], maxp[];
void findroot ( int u, int f ) {
siz[u] = ;
for ( int i = h[u]; i; i = nex[i] ) {
int v = tov[i];
if ( v == f || vis[v] ) continue;
findroot ( v, u );
siz[u] += siz[v];
maxp[u] = max ( maxp[u], siz[v] );
}
maxp[u] = max ( maxp[u], size - siz[u] );
if ( maxp[u] < maxp[root] ) root = u;
} int dep[], dis[];
void getdis ( int u, int f ) {
dep[++dep[]] = dis[u];
for ( int i = h[u]; i; i = nex[i] ) {
int v = tov[i];
if ( v == f || vis[v] ) continue;
dis[v] = dis[u] + w[i];
getdis ( v, u );
}
} bool judge[], exist[];
int q[], p;
void count ( int u ) {
int p = ;
for ( int i = h[u]; i; i = nex[i] ) {
int v = tov[i];
if ( vis[v] ) continue; dep[] = ; dis[v] = w[i];
getdis ( v, u ); for ( int j = dep[]; j; j -- )
for ( int k = ; k <= m; k ++ )
if ( qus[k] >= dep[j] )
judge[k] |= exist[qus[k]-dep[j]]; for ( int j = dep[]; j; j -- )
q[++p] = dep[j], exist[dep[j]] = ;
}
for ( int i = ; i <= p; i ++ )
exist[q[i]] = ;
} void work ( int u ) {
vis[u] = ; exist[] = ;
count ( u );
for ( int i = h[u]; i; i = nex[i] ) {
int v = tov[i];
if ( vis[v] ) continue;
size = siz[v]; root = ;
findroot ( v, );
work ( root );
}
} int main ( ) {
freopen ( "a.in", "r", stdin );
freopen ( "a.out", "w", stdout );
scanf ( "%d%d", &n, &m );
for ( int i = ; i < n; i ++ ) {
int a, b, c;
scanf ( "%d%d%d", &a, &b, &c );
add ( a, b, c );
add ( b, a, c );
} for ( int i = ; i <= m; i ++ )
scanf ( "%d", &qus[i] ); size = n; maxp[root] = n;
findroot ( , );
work ( root ); for ( int i = ; i <= m; i ++ )
if ( judge[i] )
printf ( "AYE\n" );
else printf ( "NAY\n" );
return ;
}

【点分治】【路径小于等于k的条数】【路径恰好等于k是否存在】的更多相关文章

  1. 【分治】输出前k大的数

    描述 给定一个数组,统计前k大的数并且把这k个数从大到小输出. 输入第一行包含一个整数n,表示数组的大小.n < 100000.第二行包含n个整数,表示数组的元素,整数之间以一个空格分开.每个整 ...

  2. OpenJ_Bailian 7617 输出前k大的数

    题目传送门 OpenJ_Bailian 7617 描述 给定一个数组,统计前k大的数并且把这k个数从大到小输出. 输入 第一行包含一个整数n,表示数组的大小.n < 100000.第二行包含n个 ...

  3. 基于快速排序思想partition查找第K大的数或者第K小的数。

    快速排序 下面是之前实现过的快速排序的代码. function quickSort(a,left,right){ if(left==right)return; let key=partition(a, ...

  4. 7617:输出前k大的数

    7617:输出前k大的数 查看 提交 统计 提问 总时间限制: 10000ms 单个测试点时间限制: 1000ms 内存限制: 65536kB 描述 给定一个数组,统计前k大的数并且把这k个数从大到小 ...

  5. 输出前 k 大的数

    总时间限制: 10000ms 单个测试点时间限制: 1000ms 内存限制: 65536kB 描述 给定一个数组,统计前k大的数并且把这k个数从大到小输出. 输入 第一行包含一个整数n,表示数组的大小 ...

  6. 求数列中第K大的数

    原创 利用到快速排序的思想,快速排序思想:https://www.cnblogs.com/chiweiming/p/9188984.html array代表存放数列的数组,K代表第K大的数,mid代表 ...

  7. 每天一道算法题(32)——输出数组中第k小的数

    1.题目 快速输出第K小的数 2.思路 使用快速排序的思想,递归求解.若键值位置i与k相等,返回.若大于k,则在[start,i-1]中寻找第k大的数.若小于k.则在[i+1,end]中寻找第k+st ...

  8. 输出前k大的数

    总时间限制: 10000ms单个测试点时间限制:1000ms内存限制:65536kB(noi) 描述 给定一个数组,统计前k大的数并且把这k个数从大到小输出. 输入 第一行包含一个整数n,表示数组的大 ...

  9. noi 统计前k大的数

    描述 给定一个数组,统计前k大的数并且把这k个数从大到小输出. 输入 第一行包含一个整数n,表示数组的大小.n < 100000. 第二行包含n个整数,表示数组的元素,整数之间以一个空格分开.每 ...

随机推荐

  1. PHP 5 MySQLi 函数总结

    连接数据库 mysqli_connect() 函数打开一个到 MySQL 服务器的新的连接. <?php $con=mysqli_connect("localhost",&q ...

  2. BeanPostProcessor的五大接口

    BeanPostProcessor 关于对象初始化前后的回调. public interface BeanPostProcessor { //该方法在bean实例化完毕(且已经注入完毕),在after ...

  3. 模型稳定度指标PSI与IV

    由于模型是以特定时期的样本所开发的,此模型是否适用于开发样本之外的族群,必须经过稳定性测试才能得知.稳定度指标(population stability index ,PSI)可衡量测试样本及模型开发 ...

  4. phinx:php数据库迁移

    Phinx使你的php app进行数据迁移的过程变得异常轻松,在五分钟之内你就可以安装好Phinx 并进行数据迁移. 特性 使用php代码进行数据迁移 部署模式下迁移 五分钟之内使用 不再担心数据库的 ...

  5. 64_t5

    texlive-mkpattern-svn15878.1.2-33.fc26.2.noarch..> 24-May-2017 15:54 38178 texlive-mkpic-bin-svn3 ...

  6. koa中间层 文件下载的请求转发

    背景: 前端用a标签发起下载文档的get请求 node中间层接到get请求后将请求转发到java后端 java后端返回文档流传递给node中间层 好处: 后端的java业务逻辑层接口.数据库不向外部暴 ...

  7. 「caffe编译bug」python/caffe/_caffe.cpp:10:31: fatal error: numpy/arrayobject.h: No such file or directory

    在Makefile.config找到PYTHON_INCLUDE,发现有点不同: PYTHON_INCLUDE := /usr/include/python2.7 \         /usr/lib ...

  8. 【IT公司笔试面试】75道逻辑推理题及答案

    [1]假设有一个池塘,里面有无穷多的水.现有2个空水壶,容积分别为5升和6升.问题是如何只用这2个水壶从池塘里取得3升的水. 由满6向空5倒,剩1升,把这1升倒5里,然后6剩满,倒5里面,由于5里面有 ...

  9. nginx 查看当前的连接数

    netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a,S[a]}' https://www.cnblogs.com/lianzhil ...

  10. java基础15 内部类(成员内部类、局部内部类)和匿名内部类

    一.内部类 1.1.1.成员内部类 一个类定义在另一个类的内部,那么该类就叫作成员内部类 1.1.2.成员内部类访问方式 方式一:在外部类中提供一个方法创建内部类的对象进行访问       方式二:在 ...