「ZJOI2018」历史
「ZJOI2018」历史
前置知识
\(\text{LCT}\) 维护子树信息,考虑辅助树上一个节点的子树信息只是其代表的这一段链的信息,设 \(S(u)\) 为节点 \(u\) 的子树信息,那么在辅助树上我们维护的是:
\]
考虑它们的实际意义 \(lson\) 是 \(u\) 的父亲,\(rson\) 是 \(u\) 的重儿子,显然 \(S(lson)\) 是我们不需要的,而真正的辅助信息只算了节点本身和重儿子。
考虑按照这样算的话, \(u\) 的每一个轻儿子代表的子树信息都是合法的,那么可以再开一个 \(vs(u)\) 把所有轻儿子的 \(S\) 加上去。
\]
轻重链切换的时候暴力更新一下 \(vs(u)\) 即可,动态加边的话因为要影响虚边,要把两个点都 \(\text{makeroot}\) 来保证更新的 \(vs(u)\) 合法,删边的话因为保证了关系是重儿子,所以直接做就好了,\(access\) 切换轻重边的时候需要重新维护一下。
但这种做法适用范围不大,信息不可减就做不了,只能单点不断条重链修改,然而对这道题来说已经足够了。
解题思路
观察发现每个节点的贡献是独立的,同一个儿子内的连续多次崛起不会贡献新的代价。显然要最大化每个节点的贡献需要尽可能两次崛起位于不同的儿子的子树。
设节点 \(u\) 的子树 \(a_i\) 和为 \(sz(u)\) ,\(mson=\max(\max_{u\rightarrow v}sz(v), a(u))\) 。
如果 \(2mson\leq sz(u)\) ,那么显然可以构造出操作序列满足不会有连续相同,贡献就是 \(sz(u)-1\)。
否则可以贪心的考虑,尽可能多用 \(mson\) ,节点 \(u\) 的贡献就是 \(2(sz(u)-mson)\)。
如果 \(u\) 的一个儿子 \(v\) 满足 \(2sz(v)>sz(u)\) ,那么我们记 \(u\rightarrow v\) 这条边为重边,其余边为轻边,类似于树链剖分和 \(\text{LCT}\) 的结构。
然后我们可以得到一些基本推论。
- 一个节点向下只会至多有一条重边。
- 一个节点到根的路径上只会至多有 \(log_{na_i}\) 条轻边,因为每有一条轻边 \(sz(u)\) 至少减少二分之一。
观察发现每一次修改操作,路径上的重边仍旧是重边,所以贡献不变,路径上的轻边可能会发生改变,只需要找到这些轻边暴力改就好了。
前面说了这个结构和 \(\text{LCT}\) 很类似,只需要每条重链用辅助树维护,支持单点加求一个点在根为 \(1\) 时的子树和,以及找一个点到一条路径上的轻边。
前面两个要求 \(\text{LCT}\) 维护子树信息可以直接做,查询只需要类似 \(access\) 走一遍,但是不要强制断开原有的重边,而是对于每条轻边按照前置知识的方法更新子树和再判断,细节有点多。
复杂度的话,单次修改 \(\text{splay}\) 重链条数次,轻边条数是 \(O(log_{na_i})\) ,和正常的 \(\text{LCT}\) 没啥区别,套用那个的均摊分析就是 \(\mathcal O(nlogn)\) 。
code
/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 800005;
vector<int> g[N];
int ch[N][2], fa[N], n, m;
ll vs[N], a[N], s[N], ans;
#define son(x) (ch[fa[x]][1] == x)
#define isr(x) (ch[fa[x]][0] != x && ch[fa[x]][1] != x)
inline void update(int u){ s[u] = s[ch[u][0]] + s[ch[u][1]] + a[u] + vs[u]; }
inline void rotate(int x){
int F = fa[x], G = fa[F], w = son(x);
if(!isr(F)) ch[G][son(F)] = x; fa[x] = G;
ch[F][w] = ch[x][w^1], fa[ch[x][w^1]] = F;
ch[x][w^1] = F, fa[F] = x, update(F);
}
inline void splay(int x){
for(int F = fa[x]; !isr(x); rotate(x), F = fa[x])
if(!isr(F)) rotate(son(F) == son(x) ? F : x);
update(x);
}
inline ll calc(int x, ll t, ll h){
return ch[x][1] ? ((t - h) << 1) : ((a[x] << 1) > t ? ((t - a[x]) << 1) : t - 1);
}
inline void access(int x, int w){
splay(x);
ll now = s[x] - s[ch[x][0]], mson = s[ch[x][1]];
ans -= calc(x, now, mson), s[x] += w, a[x] += w, now += w;
if((mson << 1) <= now) vs[x] += mson, ch[x][1] = mson = 0;
ans += calc(x, now, mson), update(x);
int c = x; x = fa[x];
for(; x; c = x, x = fa[x]){
splay(x);
ll now = s[x] - s[ch[x][0]], mson = s[ch[x][1]];
ans -= calc(x, now, mson), s[x] += w, vs[x] += w, now += w;
if((mson << 1) <= now) vs[x] += mson, ch[x][1] = mson = 0;
if((s[c] << 1) > now) vs[x] -= (mson = s[c]), ch[x][1] = c;
ans += calc(x, now, mson), update(x);
}
}
inline void dfs(int u){
s[u] = a[u];
for(int i = 0; i < (int) g[u].size(); i++)
if(g[u][i] != fa[u]) fa[g[u][i]] = u, dfs(g[u][i]), s[u] += s[g[u][i]];
for(int i = 0; i < (int) g[u].size(); i++)
if(g[u][i] != fa[u] && s[g[u][i]] * 2 > s[u]) ch[u][1] = g[u][i];
vs[u] = s[u] - a[u] - s[ch[u][1]];
ans += calc(u, s[u], s[ch[u][1]]);
}
int main(){
read(n), read(m);
for(int i = 1; i <= n; i++) read(a[i]);
for(int i = 1, x, y; i < n; i++){
read(x), read(y);
g[x].push_back(y), g[y].push_back(x);
}
dfs(1);
printf("%lld\n", ans);
for(int i = 1, x, y; i <= m; i++){
read(x), read(y), access(x, y);
printf("%lld\n", ans);
}
return 0;
}
「ZJOI2018」历史的更多相关文章
- 「ZJOI2018」历史(LCT)
「ZJOI2018」历史(LCT) \(ZJOI\) 也就数据结构可做了-- 题意:给定每个点 \(access\) 次数,使轻重链切换次数最大,带修改. \(30pts:\) 挺好想的.发现切换次数 ...
- @loj - 2434@ 「ZJOI2018」历史
目录 @description@ @solution@ @accepted code@ @details@ @description@ 九条可怜是一个热爱阅读的女孩子. 这段时间,她看了一本非常有趣的 ...
- 题解 「ZJOI2018」历史
题目传送门 Description 九条可怜是一个热爱阅读的女孩子. 这段时间,她看了一本非常有趣的小说,这本小说的架空世界引起了她的兴趣. 这个世界有 \(n\) 个城市,这 \(n\) 个城市被恰 ...
- LOJ #2434. 「ZJOI2018」历史(LCT)
题意 click here 题解 我们首先考虑答案是个什么样的东西, 不难 发现每个点可以单独计算它的贡献. 令每个点 \(i\) 崛起次数为 \(a_i\) . 假设一个点子树的 \(\sum a_ ...
- LOJ2434. 「ZJOI2018」历史 [LCT]
LOJ 思路 第一眼看似乎没有什么思路,试着套个DP上去:设\(dp_x\)表示只考虑\(x\)子树,能得到的最大答案. 合并的时候发现只有\(x\)这个点有可能做出新的贡献,而做出新贡献的时候必然是 ...
- 「ZJOI2018」胖(ST表+二分)
「ZJOI2018」胖(ST表+二分) 不开 \(O_2\) 又没卡过去是种怎么体验... 这可能是 \(ZJOI2018\) 最简单的一题了...我都能 \(A\)... 首先我们发现这个奇怪的图每 ...
- Loj #2529. 「ZJOI2018」胖
Loj #2529. 「ZJOI2018」胖 题目描述 Cedyks 是九条可怜的好朋友(可能这场比赛公开以后就不是了),也是这题的主人公. Cedyks 是一个富有的男孩子.他住在著名的 The P ...
- 「JOISC 2014 Day1」 历史研究
「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...
- 「2014-2-26」Unicode vs. UTF-8 etc.
目测是个老问题了.随便一搜,网上各种总结过.这里不辞啰嗦,尽量简洁的备忘一下. 几个链接,有道云笔记链接,都是知乎上几个问题的摘录:阮一峰的日志,1-5 还是值得参考,但是之后的部分则混淆了 Wind ...
随机推荐
- Javascript的执行过程详细研究
下面我们以更形象的示例来说明JavaScript代码在页面中的执行顺序.如果说,JavaScript引擎的工作机制比较深奥是因为它属于底层行为,那么JavaScript代码执行顺序就比较形象了,因为我 ...
- Map总结
Map是键值对集合,是一对一对往上存的,要保持键的唯一性 形式:Map<K, V> 方法: 增 put(K key, V value) 若存储时Map中有相同的键,则返回原来键的值,并覆盖 ...
- Spring整合Quartz分布式调度
前言 为了保证应用的高可用和高并发性,一般都会部署多个节点:对于定时任务,如果每个节点都执行自己的定时任务,一方面耗费了系统资源,另一方面有些任务多次执行,可能引发应用逻辑问题,所以需要一个分布式的调 ...
- nginx 配置代理某个路径
location /test{ proxy_pass http://localhost:8765/test; proxy_set_header Host $http_host; } 其中红色的那句可以 ...
- Pyrhon代码的中文问题
解决代码中出现中文乱码的问题: 使用中文需要在第一行声明编码#encoding=utf-8 或者#coding=utf-8 python只检查#.coding和编码字符串,所以你可能回见到下面的声明方 ...
- 《STL源码剖析》读书笔记
转载:https://www.cnblogs.com/xiaoyi115/p/3721922.html 直接逼入正题. Standard Template Library简称STL.STL可分为容器( ...
- C/C++——#和##操作符
1. #操作符 使用阶段:预处理阶段,只有宏定义中使用(#define) 作用:将宏参数转换为字符串 示例: #define STRING(x) #x 2. ##操作符 使用阶段:预处理阶段,只有宏定 ...
- Linux环境Nginx安装、调试以及PHP安装
linux版本:64位CentOS 6.4 Nginx版本:nginx1.8.0 php版本:php5.5 1.编译安装Nginx 官网:http://wiki.nginx.org/Install 下 ...
- Linux下快速查找文件
1 locate 查找内容.查找数据库,updatedb命令更新数据库 2 which 命令 3 find 路径 -name 查找内容.find命令会磁盘查找,比较耗时. 4 grep 查找内容一般为 ...
- (四)Spring 对DAO 的支持
第一节:Spring 对JDBC 的支持 1,配置数据源dbcp: 2,使用JdbcTemplate: 3,JdbcDaoSupport 的使用: 4,NamedParameterJdbcTempla ...