先简单记下,等有时间再整理

PCA 主要思想,把 协方差矩阵 对角化,协方差矩阵是实对称的。
里面涉及到矩阵论的一点基础知识:

基变换:

Base2 = P · Base1

相应的 坐标变换

P · coordinate2 = coordinate1

将 X 转换到 Y,Y = P · X  , X是原来的基,Y是新的基,P是过渡矩阵。

后面可以用 实对称阵的相似对角化来处理。

D = Y · Y^T = P(1/m·X·X^T)P^T

讲的有点乱

直接上代码 和图吧。

# -*- coding=utf-8 -*-

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt '''
PCA is similar diagnalization Covariance Matrix
''' X = pd.read_csv('testSet.txt',header=None,delimiter='\t').as_matrix()
# print(X) # 1.0centralization
# print(X.mean(axis=0)) [9.0639,9.096]
X_cen = X - X.mean(axis=0)
# 2.0 covariance matrix
cov_X = np.dot(X_cen.T,X_cen) / X_cen.shape[0]
# 3.0 get eigVector which is p A = pXX^Tp^T
# Y = p
eigVal,eigVector = np.linalg.eig(cov_X)
P = eigVector[:,::-1]
# P[:,-1] = np.array([0,0])
# Y = np.dot(P,(X_cen.T)).T
print(P)
P = np.linalg.inv(P)
'''
[-0.52045195 -0.85389096]
[-0.85389096 0.52045195]]
''' cor = np.linspace(-2,2,1000)
plt.plot(X_cen[:,0],X_cen[:,1],'.b')
plt.plot(cor,cor*P[0,1]/P[0,0],'-r')
# plt.plot(Y[:,0],Y[:,1],'.r')
plt.show()

  

参考:
https://www.cnblogs.com/mikewolf2002/p/3429711.html

PCA 学习笔记的更多相关文章

  1. PCA学习笔记

    主成分分析(Principal Component Analysis,简称PCA)是最常用过的一种降维方法 在引入PCA之前先提到了如何使用一个超平面对所有的样本进行恰当的表达? 即若存在这样的超平面 ...

  2. 数据降维PCA——学习笔记

    PCA主成分分析 无监督学习 使方差(数据离散量)最大,更易于分类. 可以对隐私数据PCA,数据加密. 基变换 投影->内积 基变换 正交的基,两个向量垂直(内积为0,线性无关) 先将基化成各维 ...

  3. 机器学习13—PCA学习笔记

     主成分分析PCA 机器学习实战之PCA test13.py #-*- coding:utf-8 import sys sys.path.append("pca.py") impo ...

  4. LDA PCA 学习笔记

    提要: 本文主要介绍了和推导了LDA和PCA,参考了这篇博客 LDA LDA的原理是,将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况, ...

  5. 机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据

    机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Ma ...

  6. Deep Learning(深度学习)学习笔记整理系列之(五)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  7. Deep Learning(深度学习)学习笔记整理系列之(四)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  8. Deep Learning深入研究整理学习笔记五

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  9. cips2016+学习笔记︱简述常见的语言表示模型(词嵌入、句表示、篇章表示)

    在cips2016出来之前,笔者也总结过种类繁多,类似词向量的内容,自然语言处理︱简述四大类文本分析中的"词向量"(文本词特征提取)事实证明,笔者当时所写的基本跟CIPS2016一 ...

随机推荐

  1. [转]MySQL 经验集

    -- my.ini -> 在 [mysqld] 节点下加入一行 skip-grant-tables 然后重启服务 -- 接下来无密码登录到 mysql 执行以下命令 use mysql show ...

  2. 文档主题生成模型(LDA)

    一.问题描述 1.1文本建模相关 统计文本建模的目的其实很简单:就是估算一组参数,这组参数使得整个语料库出现的概率最大.这是很简单的极大似然的思想了,就是认为观测到的样本的概率是最大的.建模的目标也是 ...

  3. 代做JSP课程设计,毕业设计

    代做JSP课程设计,毕业设计,大家都是学生,绝对靠谱,有意者加我Q 279283855

  4. 第七章 API网关服务:Spring Cloud Zuul

    API网关是一个更为智能的应用服务器, 它的定义类似于面向对象设计模式中的Facade模式, 它的存在就像是整个微服务架构系统的门面一样,所有的外部客户端访问都需要经过它来进行调度和过滤.它除了要实现 ...

  5. linux中awk工具

    awk sed以行为单位处理文件,awk比sed强的地方在于不仅能以行为单位还能以列为单位处理文件.awk缺省的行分隔符是换行,缺省的列分隔符是连续的空格和Tab,但是行分隔符和列分隔符都可以自定义, ...

  6. 「小程序JAVA实战」小程序上传短视频(46)

    转自:https://idig8.com/2018/09/14/xiaochengxujavashizhanxiaochengxushangchuanduanshipin45/ 个人信息:用户上传短视 ...

  7. TBluetoothLEDevice.UpdateOnReconnect

    System.Bluetooth.TBluetoothLEDevice.UpdateOnReconnect Description Indicates whether the manager auto ...

  8. 跟我学算法聚类(kmeans)

    kmeans是一种无监督的聚类问题,在使用前一般要进行数据标准化, 一般都是使用欧式距离来进行区分,主要是通过迭代质心的位置 来进行分类,直到数据点不发生类别变化就停止, 一次分类别,一次变换质心,就 ...

  9. ATL项目编译注册dll的时候报权限错误:error MSB8011: Failed to register output. Please try enabling Per-user Redirection or register the component from a command prompt with elevated permissions.

    atl工程在vs2013编译的时候会在编译成功之后去使用 regsvr32 去注册 生成的 .dll 偶尔在编译的时候会遇到下面的错误: error MSB8011: Failed to regist ...

  10. js 阻止事件捕获

    1.支持W3C标准的浏览器在添加事件时用addEventListener(event,fn,useCapture)方法,基中第3个参数 useCapture是一个Boolean值,用来设置事件是在事件 ...