这是 meelo 原创的 IEEEXtreme极限编程大赛题解

Xtreme 10.0 - Game of Stones

题目来源 第10届IEEE极限编程大赛

https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/game-of-stones-1-1

Alice and Bob play a game. The game is turn based: Alice moves first, then Bob, and so on. There are N piles of stones; in every pile there is an odd number of stones. At every turn, the one to play must pick a pile and splits it into 3 piles with an odd number of stones each.

The player who cannot split any pile loses. As this game is too simple for both of them, they decided to play multiple games in parallel. The rules remain the same, but at every turn, the one to play must first pick a game and then split a pile only in that game. The one who loses is the one that can't split any pile in any game, i.e. all the piles in all the games have only 1 stone. Bob still thinks that he is at a disadvantage, since he is the second to move. Your task is to find the winner if both the players play optimally.

Input Format

The input begins with an integer T, giving the number of test cases in the input.

Each testcase begins with an integer G, on a line by itself, giving the number of games to be played in parallel.

The G games are then described in two lines as follows: The first line gives the number of piles in the game, and the second contains the number of stones in each of the piles.

Constraints

1 <= T <= 10

1 <= [Number of piles in all games in a testcase] <= 105

1 <= [Number of stones in a pile] <= 109

Output Format

For each testcase, output the winner, i.e. either Alice or Bob, on a line by itself.

Sample Input

2
2
3
1 3 5
2
3 7
1
5
1 3 5 7 9

Sample Output

Alice
Bob

Explanation

The sample input can be annotated as follows:

2 (the number of tests)
2 (the number of parallel games for the first test)
3 (the number of piles in the first game)
1 3 5
2 (the number of piles in the second game)
3 7
1 (the number of parallel games for the second test)
5 (the number of piles)
1 3 5 7 9

题目解析

石子个数为N的堆,不论分堆的方式,总共有N//2(整除)次分堆的机会,

假设f(N)表示,石子个数为N的堆,总共分堆的次数,

可以验证:f(0)=0, f(1)=0, f(3)=1, f(5)=2, f(7)=3, f(9)=4…… 好心人可以证明一下。

举一个例子:

9=(1,1,7)=(1,1,(1,1,5))=(1,1,(1,1,(1,1,3)))=(1)*9

9=(1,1,7)=(1,1,(1,3,3))=(1,1,(1,(1,1,1),3))=(1)*9

9=(1,3,5)=(1,(1,1,1),5)=(1,(1,1,1),(1,1,3))=(1)*9

9=(1,3,5)=(1,3,(1,1,3))=(1,(1,1,1),(1,1,3))=(1)*9

9=(3,3,3)=((1,1,1),3,3)=((1,1,1),(1,1,1),3)=(1)*9

不论怎么分堆,9个石子最终有4次分堆的机会。

不同堆之间相互独立,所有堆的分堆次数,是每一个堆分堆次数的和;

不同游戏之间相互独立,所有游戏的分堆次数,是每一个游戏分堆次数的和;

其实问题的结果和不同的游戏根本没有关系,仔细想想其实这是出题者在引入额外的复杂性。

Alice或Bob走一步,即分堆一次,分堆次数则减少一次;

在Alice走第一步之前,如果所有游戏的所有堆的分堆次数为奇数则Alice赢,如果为偶数则Bob赢;

既然游戏的输赢只与和的奇偶性有关,对每一堆的分堆次数二进制末位做一位的二进制加法就好了;

然后,一位的二进制加法可以由异或实现。

程序

C++

#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
int T;
cin >> T;
for(int t=; t<T; t++){
int G;
cin >> G;
bool alice = false; // initial bob win
for(int g=; g<G; g++) {
int P;
cin >> P;
for(int p=; p<P; p++) {
int n;
cin >> n;
alice ^= (n >> ) & ; // one bit binary addition
}
}
if(alice) {
cout << "Alice" << endl;
}
else {
cout << "Bob" << endl;
}
}
return ;
}

Python3

T = int(input())
for test_case in range(T):
G = int(input())
pile = []
tot_pile =
string = ""
for i in range(G):
tot_pile += int(input())
string += " " + input()
pile = [int(x) for x in string.split()]
tot_turns =
for i in pile:
tot_turns += i//
if tot_turns % == :
print("Bob")
else:
print("Alice")

from: medium.com/xtremefun/xtreme-10-0-game-of-stones-c29aaa72ec1e

博客中的文章均为 meelo 原创,请务必以链接形式注明 本文地址简书同步更新地址

IEEEXtreme 10.0 - Game of Stones的更多相关文章

  1. IEEEXtreme 10.0 - Inti Sets

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Inti Sets 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.c ...

  2. IEEEXtreme 10.0 - Painter's Dilemma

    这是 meelo 原创的 IEEEXtreme极限编程比赛题解 Xtreme 10.0 - Painter's Dilemma 题目来源 第10届IEEE极限编程大赛 https://www.hack ...

  3. IEEEXtreme 10.0 - Ellipse Art

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Ellipse Art 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank ...

  4. IEEEXtreme 10.0 - Counting Molecules

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...

  5. IEEEXtreme 10.0 - Checkers Challenge

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Checkers Challenge 题目来源 第10届IEEE极限编程大赛 https://www.hac ...

  6. IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...

  7. IEEEXtreme 10.0 - Full Adder

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...

  8. IEEEXtreme 10.0 - N-Palindromes

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...

  9. IEEEXtreme 10.0 - Mysterious Maze

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Mysterious Maze 题目来源 第10届IEEE极限编程大赛 https://www.hacker ...

随机推荐

  1. 找圆算法((HoughCircles)总结与优化

    http://www.opencv.org.cn/forum.php?mod=viewthread&tid=34096  Opencv内部提供了一个基于Hough变换理论的找圆算法,Hough ...

  2. java中Mysql开发

    [IntelliJ IDEA 12使用]导入外部包 http://www.cnblogs.com/haochuang/p/3491959.html JDBC导入包即可 http://blog.163. ...

  3. 「Django」rest_framework学习系列-序列化

    序列化方式一 :在业务类里序列化数据库数据 class RolesView(APIView): def get(self,request,*args,**kwargs): roles = models ...

  4. duilib 增加gif控件(基于gdi+,可控制播放暂停,自动设置大小)

    转载请说明原出处,谢谢~~:http://blog.csdn.net/zhuhongshu/article/details/42502081 因为项目需要我需要给duilib增加一个gif控件,目前已 ...

  5. redis服务启动脚本

    /etc/rc.d/init.d/redis #!/bin/sh# chkconfig: 2345 80 90 # description: Start and Stop redis REDISPOR ...

  6. HTML入门(一)

    ---恢复内容开始--- HTML 一 .HTML介绍 1. 什么是HTML? 超文本标记语言: 超文本: 比普通文本更强大 标记语言: 使用一组标签对内容进行描述的一门语言,它不是编程语言! 2. ...

  7. bzoj3524/2223 [Poi2014]Couriers

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3524 http://www.lydsy.com/JudgeOnline/problem.ph ...

  8. NYOJ 1063 生活的烦恼 (二叉树)

    题目链接 描述 生活的暑假刚集训开始,他要决心学好字典树,二叉树,线段树和各种树,但生活在OJ上刷题的时候就遇到了一个特别烦恼的问题.那当然就是他最喜欢的二二叉树咯!题目是这样的:给你一颗非空的二叉树 ...

  9. 巅峰极客第二场CTF部分writeup

    word-MISC 微信回答问题+word字体里. sqli-WEB 注册个admin空格即可,长字符截断. 晚上把后续的写出来.现在睡觉

  10. linux驱动开发:用户空间操作LCD显示简单的图片【转】

    转自:http://blog.csdn.net/changliang7731/article/details/53074616 上一章我们简单介绍了LCD的一些基本原理.当然更深奥的还有,比如gamm ...