这是 meelo 原创的 IEEEXtreme极限编程大赛题解

Xtreme 10.0 - Game of Stones

题目来源 第10届IEEE极限编程大赛

https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/game-of-stones-1-1

Alice and Bob play a game. The game is turn based: Alice moves first, then Bob, and so on. There are N piles of stones; in every pile there is an odd number of stones. At every turn, the one to play must pick a pile and splits it into 3 piles with an odd number of stones each.

The player who cannot split any pile loses. As this game is too simple for both of them, they decided to play multiple games in parallel. The rules remain the same, but at every turn, the one to play must first pick a game and then split a pile only in that game. The one who loses is the one that can't split any pile in any game, i.e. all the piles in all the games have only 1 stone. Bob still thinks that he is at a disadvantage, since he is the second to move. Your task is to find the winner if both the players play optimally.

Input Format

The input begins with an integer T, giving the number of test cases in the input.

Each testcase begins with an integer G, on a line by itself, giving the number of games to be played in parallel.

The G games are then described in two lines as follows: The first line gives the number of piles in the game, and the second contains the number of stones in each of the piles.

Constraints

1 <= T <= 10

1 <= [Number of piles in all games in a testcase] <= 105

1 <= [Number of stones in a pile] <= 109

Output Format

For each testcase, output the winner, i.e. either Alice or Bob, on a line by itself.

Sample Input

2
2
3
1 3 5
2
3 7
1
5
1 3 5 7 9

Sample Output

Alice
Bob

Explanation

The sample input can be annotated as follows:

2 (the number of tests)
2 (the number of parallel games for the first test)
3 (the number of piles in the first game)
1 3 5
2 (the number of piles in the second game)
3 7
1 (the number of parallel games for the second test)
5 (the number of piles)
1 3 5 7 9

题目解析

石子个数为N的堆,不论分堆的方式,总共有N//2(整除)次分堆的机会,

假设f(N)表示,石子个数为N的堆,总共分堆的次数,

可以验证:f(0)=0, f(1)=0, f(3)=1, f(5)=2, f(7)=3, f(9)=4…… 好心人可以证明一下。

举一个例子:

9=(1,1,7)=(1,1,(1,1,5))=(1,1,(1,1,(1,1,3)))=(1)*9

9=(1,1,7)=(1,1,(1,3,3))=(1,1,(1,(1,1,1),3))=(1)*9

9=(1,3,5)=(1,(1,1,1),5)=(1,(1,1,1),(1,1,3))=(1)*9

9=(1,3,5)=(1,3,(1,1,3))=(1,(1,1,1),(1,1,3))=(1)*9

9=(3,3,3)=((1,1,1),3,3)=((1,1,1),(1,1,1),3)=(1)*9

不论怎么分堆,9个石子最终有4次分堆的机会。

不同堆之间相互独立,所有堆的分堆次数,是每一个堆分堆次数的和;

不同游戏之间相互独立,所有游戏的分堆次数,是每一个游戏分堆次数的和;

其实问题的结果和不同的游戏根本没有关系,仔细想想其实这是出题者在引入额外的复杂性。

Alice或Bob走一步,即分堆一次,分堆次数则减少一次;

在Alice走第一步之前,如果所有游戏的所有堆的分堆次数为奇数则Alice赢,如果为偶数则Bob赢;

既然游戏的输赢只与和的奇偶性有关,对每一堆的分堆次数二进制末位做一位的二进制加法就好了;

然后,一位的二进制加法可以由异或实现。

程序

C++

#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
int T;
cin >> T;
for(int t=; t<T; t++){
int G;
cin >> G;
bool alice = false; // initial bob win
for(int g=; g<G; g++) {
int P;
cin >> P;
for(int p=; p<P; p++) {
int n;
cin >> n;
alice ^= (n >> ) & ; // one bit binary addition
}
}
if(alice) {
cout << "Alice" << endl;
}
else {
cout << "Bob" << endl;
}
}
return ;
}

Python3

T = int(input())
for test_case in range(T):
G = int(input())
pile = []
tot_pile =
string = ""
for i in range(G):
tot_pile += int(input())
string += " " + input()
pile = [int(x) for x in string.split()]
tot_turns =
for i in pile:
tot_turns += i//
if tot_turns % == :
print("Bob")
else:
print("Alice")

from: medium.com/xtremefun/xtreme-10-0-game-of-stones-c29aaa72ec1e

博客中的文章均为 meelo 原创,请务必以链接形式注明 本文地址简书同步更新地址

IEEEXtreme 10.0 - Game of Stones的更多相关文章

  1. IEEEXtreme 10.0 - Inti Sets

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Inti Sets 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.c ...

  2. IEEEXtreme 10.0 - Painter's Dilemma

    这是 meelo 原创的 IEEEXtreme极限编程比赛题解 Xtreme 10.0 - Painter's Dilemma 题目来源 第10届IEEE极限编程大赛 https://www.hack ...

  3. IEEEXtreme 10.0 - Ellipse Art

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Ellipse Art 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank ...

  4. IEEEXtreme 10.0 - Counting Molecules

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...

  5. IEEEXtreme 10.0 - Checkers Challenge

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Checkers Challenge 题目来源 第10届IEEE极限编程大赛 https://www.hac ...

  6. IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...

  7. IEEEXtreme 10.0 - Full Adder

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...

  8. IEEEXtreme 10.0 - N-Palindromes

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...

  9. IEEEXtreme 10.0 - Mysterious Maze

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Mysterious Maze 题目来源 第10届IEEE极限编程大赛 https://www.hacker ...

随机推荐

  1. 前端解放生产力之–动画(Adobe Effects + bodymovin + lottie)

    大概很久很久以前,2017年,参加了第二届中国前端开发者大会(FDCon2017),除了看了一眼尤雨溪,印象最深刻的就是手淘渚薰分享的关于H5交互的内容了.时光荏苒,最近再次接触,简单回顾一下. 示例 ...

  2. 网站访问日志User Agent对照表

    percent useragent system user_agent_string_md5 8.9% Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleW ...

  3. Ubuntu 14.04 安装Visual studio Code

    上一篇简单介绍了Ubuntu 14.04上如何创建.运行 hello world 程序. 这篇介绍Ubuntu 14.04如何安装Visual studio Code. 网上推荐的有通过Ubuntu ...

  4. 强大的jQuery网格插件 ParamQuery

    ParamQuery是一种轻量级的jQuery网格插件,基于用于用户界面控制.具有一致API的优秀设计模式jQueryUI Widget factory创建,能够在网页上展示各种类似于Excel和Go ...

  5. JQuery的几个基础操作

    先介绍两个函数(数组) 1.$.map(array,function(element,index)); 对于数组array中的每个元素,调用上面所示的function(element,index)函数 ...

  6. /i,/m,/s,/x,/A,/s,/U,/x,/j,/u 等正则修饰符用法~

    i (PCRE_CASELESS) 如果设置了这个修饰符,模式中的字母会进行大小写不敏感匹配. m (PCRE_MULTILINE) 默认情况下,PCRE 认为目标字符串是由单行字符组成的(然而实际上 ...

  7. 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)

    题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...

  8. matlab核函数与滑窗

    在处理图像时,为了提取特征,经常用各种核函数和图像进行卷积,其实就是通过一个矩阵以滑窗的形式与原图像进行点乘求和,可以看作对一个像素和附近像素进行了加权平均. 比如经常用3x3的近似高斯卷积核 0 1 ...

  9. 【leetcode 简单】第二十题 合并两个有序数组

    给定两个有序整数数组 nums1 和 nums2,将 nums2 合并到 nums1 中,使得 num1 成为一个有序数组. 说明: 初始化 nums1 和 nums2 的元素数量分别为 m 和 n. ...

  10. 学习webpack

    前言 webpack前端工程中扮演的角色越来越重要,它也是前端工程化很重要的一环.本文将和大家一起按照项目流程学习使用wbepack,妈妈再也不用担心我不会使用webpack,哪里不会看哪里.这是一个 ...