IEEEXtreme 10.0 - Game of Stones
这是 meelo 原创的 IEEEXtreme极限编程大赛题解
Xtreme 10.0 - Game of Stones
题目来源 第10届IEEE极限编程大赛
https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/game-of-stones-1-1
Alice and Bob play a game. The game is turn based: Alice moves first, then Bob, and so on. There are N piles of stones; in every pile there is an odd number of stones. At every turn, the one to play must pick a pile and splits it into 3 piles with an odd number of stones each.
The player who cannot split any pile loses. As this game is too simple for both of them, they decided to play multiple games in parallel. The rules remain the same, but at every turn, the one to play must first pick a game and then split a pile only in that game. The one who loses is the one that can't split any pile in any game, i.e. all the piles in all the games have only 1 stone. Bob still thinks that he is at a disadvantage, since he is the second to move. Your task is to find the winner if both the players play optimally.
Input Format
The input begins with an integer T, giving the number of test cases in the input.
Each testcase begins with an integer G, on a line by itself, giving the number of games to be played in parallel.
The G games are then described in two lines as follows: The first line gives the number of piles in the game, and the second contains the number of stones in each of the piles.
Constraints
1 <= T <= 10
1 <= [Number of piles in all games in a testcase] <= 105
1 <= [Number of stones in a pile] <= 109
Output Format
For each testcase, output the winner, i.e. either Alice or Bob, on a line by itself.
Sample Input
2
2
3
1 3 5
2
3 7
1
5
1 3 5 7 9
Sample Output
Alice
Bob
Explanation
The sample input can be annotated as follows:
2 (the number of tests)
2 (the number of parallel games for the first test)
3 (the number of piles in the first game)
1 3 5
2 (the number of piles in the second game)
3 7
1 (the number of parallel games for the second test)
5 (the number of piles)
1 3 5 7 9
题目解析
石子个数为N的堆,不论分堆的方式,总共有N//2(整除)次分堆的机会,
假设f(N)表示,石子个数为N的堆,总共分堆的次数,
可以验证:f(0)=0, f(1)=0, f(3)=1, f(5)=2, f(7)=3, f(9)=4…… 好心人可以证明一下。
举一个例子:
9=(1,1,7)=(1,1,(1,1,5))=(1,1,(1,1,(1,1,3)))=(1)*9
9=(1,1,7)=(1,1,(1,3,3))=(1,1,(1,(1,1,1),3))=(1)*9
9=(1,3,5)=(1,(1,1,1),5)=(1,(1,1,1),(1,1,3))=(1)*9
9=(1,3,5)=(1,3,(1,1,3))=(1,(1,1,1),(1,1,3))=(1)*9
9=(3,3,3)=((1,1,1),3,3)=((1,1,1),(1,1,1),3)=(1)*9
不论怎么分堆,9个石子最终有4次分堆的机会。
不同堆之间相互独立,所有堆的分堆次数,是每一个堆分堆次数的和;
不同游戏之间相互独立,所有游戏的分堆次数,是每一个游戏分堆次数的和;

其实问题的结果和不同的游戏根本没有关系,仔细想想其实这是出题者在引入额外的复杂性。
Alice或Bob走一步,即分堆一次,分堆次数则减少一次;
在Alice走第一步之前,如果所有游戏的所有堆的分堆次数为奇数则Alice赢,如果为偶数则Bob赢;
既然游戏的输赢只与和的奇偶性有关,对每一堆的分堆次数二进制末位做一位的二进制加法就好了;
然后,一位的二进制加法可以由异或实现。
程序
C++
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
int T;
cin >> T;
for(int t=; t<T; t++){
int G;
cin >> G;
bool alice = false; // initial bob win
for(int g=; g<G; g++) {
int P;
cin >> P;
for(int p=; p<P; p++) {
int n;
cin >> n;
alice ^= (n >> ) & ; // one bit binary addition
}
}
if(alice) {
cout << "Alice" << endl;
}
else {
cout << "Bob" << endl;
}
}
return ;
}
Python3
T = int(input())
for test_case in range(T):
G = int(input())
pile = []
tot_pile =
string = ""
for i in range(G):
tot_pile += int(input())
string += " " + input()
pile = [int(x) for x in string.split()]
tot_turns =
for i in pile:
tot_turns += i//
if tot_turns % == :
print("Bob")
else:
print("Alice")
from: medium.com/xtremefun/xtreme-10-0-game-of-stones-c29aaa72ec1e
博客中的文章均为 meelo 原创,请务必以链接形式注明 本文地址,简书同步更新地址
IEEEXtreme 10.0 - Game of Stones的更多相关文章
- IEEEXtreme 10.0 - Inti Sets
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Inti Sets 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.c ...
- IEEEXtreme 10.0 - Painter's Dilemma
这是 meelo 原创的 IEEEXtreme极限编程比赛题解 Xtreme 10.0 - Painter's Dilemma 题目来源 第10届IEEE极限编程大赛 https://www.hack ...
- IEEEXtreme 10.0 - Ellipse Art
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Ellipse Art 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank ...
- IEEEXtreme 10.0 - Counting Molecules
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Checkers Challenge
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Checkers Challenge 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...
- IEEEXtreme 10.0 - Full Adder
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...
- IEEEXtreme 10.0 - N-Palindromes
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...
- IEEEXtreme 10.0 - Mysterious Maze
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Mysterious Maze 题目来源 第10届IEEE极限编程大赛 https://www.hacker ...
随机推荐
- 【bzoj2759】一个动态树好题
Portal -->bzoj2759 Solution 哇我感觉这题真的qwq是很好的一题呀qwq 很神qwq反正我真的是自己想怎么想都想不到就是了qwq 首先先考虑一下简化版的问题应该怎么解决 ...
- oracle中 trunc(),round(),ceil(),floor的使用
oracle中 trunc(),round(),ceil(),floor的使用 原文: http://www.2cto.com/database/201310/248336.html 1.round函 ...
- Java配置jdk图文教程
1.计算机 ==>右键属性 2.高级系统设置 3.环境变量 4.找path变量 5.找到jdk的bin目录并复制路径到path环境变量里(jdk5.0以后就可以只配path路径了). 6.pat ...
- selenium - switch_to_alert() - 警告框处理
在WebDriver中处理JavaScript所生成的alert.confirm以及prompt十分简单,具体做法是使用 switch_to.alert 方法定位到 alert/confirm/pro ...
- Codeforces Round #407 (Div. 2)A B C 水 暴力 最大子序列和
A. Anastasia and pebbles time limit per test 1 second memory limit per test 256 megabytes input stan ...
- 省选模拟赛 LYK loves string(string)
题目描述 LYK喜欢字符串,它认为一个长度为n的字符串一定会有n*(n+1)/2个子串,但是这些子串是不一定全部都不同的,也就是说,不相同的子串可能没有那么多个.LYK认为,两个字符串不同当且仅当它们 ...
- 《转》sklearn参数优化方法
sklearn参数优化方法 http://www.cnblogs.com/nolonely/p/7007961.html 学习器模型中一般有两个参数:一类参数可以从数据中学习估计得到,还有一类参 ...
- Unix处理目标文件的工具
- 2.aop中几个注解的含义
参考地址:http://elim.iteye.com/blog/2395255
- 760A 水
LINK 第一天单独一行 其余7天一行 问某月有多少行 ...... /** @Date : 2017-04-02-21.35 * @Author : Lweleth (SoungEarlf@gmai ...