/*
Author: wsnpyo
Update Date: 2014-11-16
Algorithm: 快速幂/Fermat, Solovay_Stassen, Miller-Rabin素性检验/Exgcd非递归版/中国剩余定理
*/
import random def QuickPower(a, n, p): # 快速幂算法
tmp = a
ret = 1
while(n > 0):
if (n&1):
ret = (ret * tmp) % p
tmp = (tmp * tmp) % p
n>>=1
return ret def Jacobi(n, m): # calc Jacobi(n/m)
n = n%m
if n == 0:
return 0
Jacobi2 = 1
if not (n&1): # 若有n为偶数, 计算Jacobi2 = Jacobi(2/m)^(s) 其中n = 2^s*t t为奇数
k = (-1)**(((m**2-1)//8)&1)
while not (n&1):
Jacobi2 *= k
n >>= 1
if n == 1:
return Jacobi2
return Jacobi2 * (-1)**(((m-1)//2*(n-1)//2)&1) * Jacobi(m%n, n) def Exgcd(r0, r1): # calc ax+by = gcd(a, b) return x
x0, y0 = 1, 0
x1, y1 = 0, 1
x, y = r0, r1
r = r0 % r1
q = r0 // r1
while r:
x, y = x0 - q * x1, y0 - q * y1
x0, y0 = x1, y1
x1, y1 = x, y
r0 = r1
r1 = r
r = r0 % r1
q = r0 // r1
return x def Fermat(x, T): # Fermat素性判定
if x < 2:
return False
if x <= 3:
return True
if x%2 == 0 or x%3 == 0:
return False
for i in range(T):
ran = random.randint(2, x-2) # 随机取[2, x-2]的一个整数
if QuickPower(ran, x-1, x) != 1:
return False
return True def Solovay_Stassen(x, T): # Solovay_Stassen素性判定
if x < 2:
return False
if x <= 3:
return True
if x%2 == 0 or x%3 == 0:
return False
for i in range(T): # 随机选择T个整数
ran = random.randint(2, x-2)
r = QuickPower(ran, (x-1)//2, x)
if r != 1 and r != x-1:
return False
if r == x-1:
r = -1
if r != Jacobi(ran, x):
return False
return True def MillerRabin(x, ran): # x-1 = 2^s*t
tx = x-1
s2 = tx&(~tx+1) # 取出最后一位以1开头的二进制 即2^s
r = QuickPower(ran, tx//s2, x)
if r == 1 or r == tx:
return True
while s2>1: # 从2^s -> 2^1 循环s次
r = (r*r)%x
if r == 1:
return False
if r == tx:
return True
s2 >>= 1
return False def MillerRabin_init(x, T): #Miller-Rabin素性判定
if x < 2:
return False
if x <= 3:
return True
if x%2 == 0 or x%3 == 0:
return False
for i in range(T): # 随机选择T个整数
ran = random.randint(2, x-2)
if not MillerRabin(x, ran):
return False
return True def CRT(b, m, n): # calc x = b[] % m[]
M = 1
for i in range(n):
M *= m[i]
ans = 0
for i in range(n):
ans += b[i] * M // m[i] * Exgcd(M//m[i], m[i])
return ans%M

以上作为半个学期来数论学习的一个小结,也许以后难以再系统的学习数论了。略伤感咿

  —— 多谢信息安全数学基础的老师

数论基础算法总结(python版)的更多相关文章

  1. 字符串匹配算法之 kmp算法 (python版)

    字符串匹配算法之 kmp算法 (python版) 1.什么是KMP算法 KMP是三位大牛:D.E.Knuth.J.H.MorriT和V.R.Pratt同时发现的.其中第一位就是<计算机程序设计艺 ...

  2. 二分查找算法(Python版)

    [本文出自天外归云的博客园] 记性不好(@.@),所以平时根本用不到的东西就算学过如果让我去想也会需要很多时间(*.*)! 二分查找算法 在一个有序数组中查找元素最快的算法,也就是折半查找法,先找一个 ...

  3. 数据结构与算法(python版)

    ADT抽象数据类型(ADT:Abstract Data Type):ADT是对数据进行处理的一种逻辑描述,并不涉及如何实现这些处理. 同一ADT可以采用不同的数据结构来实现:1.采用程序设计语言的控制 ...

  4. 数据结构与算法(python版)教程

    算法的性质 算法的描述 算法的设计与分析

  5. 从BZOJ2242看数论基础算法:快速幂,gcd,exgcd,BSGS

    LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\) ...

  6. 北京大学公开课《数据结构与算法Python版》

    之前我分享过一个数据结构与算法的课程,很多小伙伴私信我问有没有Python版. 看了一些公开课后,今天特向大家推荐北京大学的这门课程:<数据结构与算法Python版>. 课程概述 很多同学 ...

  7. 你也可以手绘二维码(二)纠错码字算法:数论基础及伽罗瓦域GF(2^8)

    摘要:本文讲解二维码纠错码字生成使用到的数学数论基础知识,伽罗瓦域(Galois Field)GF(2^8),这是手绘二维码填格子理论基础,不想深究可以直接跳过.同时数论基础也是 Hash 算法,RS ...

  8. Python基础教程(第2版 修订版) pdf

    Python基础教程(第2版 修订版) 目录 D11章快速改造:基础知识11.1安装Python11.1.1Windows11.1.2Linux和UNIX31.1.3苹果机(Macintosh)41. ...

  9. 【数据结构与算法Python版学习笔记】引言

    学习来源 北京大学-数据结构与算法Python版 目标 了解计算机科学.程序设计和问题解决的基本概念 计算机科学是对问题本身.问题的解决.以及问题求解过程中得出的解决方案的研究.面对一 个特定问题,计 ...

随机推荐

  1. Java基础知识陷阱(八)

    本文发表于本人博客. 这次我来说说关于&跟&&的区别,大家都知道&是位运算符,而&&是逻辑运算符,看下面代码: public static void m ...

  2. SQL Server WITH ROLLUP、WITH CUBE、GROUPING语句的应用

    CUBE:CUBE 生成的结果集显示了所选列中值的所有组合的聚合. ROLLUP:ROLLUP 生成的结果集显示了所选列中值的某一层次结构的聚合. GROUPING:当行由 CUBE 或 ROLLUP ...

  3. 哪个地图API 好用

    之前我们能用的地图软件还寥寥无几,而且一个地图包动辄就上百M,还不支持GPS,没有实时路况,没有卫星图,一年也未必更新一次.现如今的地图功能已经极大丰富了,开发者的项目选择性也很大,地图哪个受众比较多 ...

  4. link cut tree模板(LCT模板)

    update:2017.09.26 #include <bits/stdc++.h> using namespace std; struct Link_Cut_Tree { + ; ], ...

  5. Java TreeMap详细介绍和使用示例

    ①对TreeMap有个整体认识 TreeMap是一个有序的key-value集合,它是通过红黑树实现的. TreeMap继承于AbstractMap,所以它是一个Map,即key-value集合. T ...

  6. iOS 所有设备一览 && CoreFoundation源码

    1. 所有设备一览 https://en.wikipedia.org/wiki/List_of_iOS_devices 2. CoreFoundation源码(可以看看runloop.runtime的 ...

  7. Linux 模拟网络丢包,延时

    实战: 丢包tc qdisc add dev bond0 root netem loss 10% 延迟tc qdisc add dev bond0 root netem latency 100ms 丢 ...

  8. 在VS2015中用C++编写可被其它语言调用的动态库DLL

    转自:http://blog.csdn.net/songyi160/article/details/50754705 VS2015用C++创建动态库DLL步骤如下: (1)启动VS2015>文件 ...

  9. shall的过去式和should怎么区分

    shall的过去式是should,但是怎么和情态动词的should区分啊,答得好我会提高悬赏!!! shall 将来时,用于第一人称:I shall be back in a minute.用来表示征 ...

  10. Job流程:提交MR-Job过程

    1.一个标准 MR-Job 的执行入口: //参数 true 表示检查并打印 Job 和 Task 的运行状况 System.exit(job.waitForCompletion(true) ? 0 ...