数论基础算法总结(python版)
/*
Author: wsnpyo
Update Date: 2014-11-16
Algorithm: 快速幂/Fermat, Solovay_Stassen, Miller-Rabin素性检验/Exgcd非递归版/中国剩余定理
*/
import random def QuickPower(a, n, p): # 快速幂算法
tmp = a
ret = 1
while(n > 0):
if (n&1):
ret = (ret * tmp) % p
tmp = (tmp * tmp) % p
n>>=1
return ret def Jacobi(n, m): # calc Jacobi(n/m)
n = n%m
if n == 0:
return 0
Jacobi2 = 1
if not (n&1): # 若有n为偶数, 计算Jacobi2 = Jacobi(2/m)^(s) 其中n = 2^s*t t为奇数
k = (-1)**(((m**2-1)//8)&1)
while not (n&1):
Jacobi2 *= k
n >>= 1
if n == 1:
return Jacobi2
return Jacobi2 * (-1)**(((m-1)//2*(n-1)//2)&1) * Jacobi(m%n, n) def Exgcd(r0, r1): # calc ax+by = gcd(a, b) return x
x0, y0 = 1, 0
x1, y1 = 0, 1
x, y = r0, r1
r = r0 % r1
q = r0 // r1
while r:
x, y = x0 - q * x1, y0 - q * y1
x0, y0 = x1, y1
x1, y1 = x, y
r0 = r1
r1 = r
r = r0 % r1
q = r0 // r1
return x def Fermat(x, T): # Fermat素性判定
if x < 2:
return False
if x <= 3:
return True
if x%2 == 0 or x%3 == 0:
return False
for i in range(T):
ran = random.randint(2, x-2) # 随机取[2, x-2]的一个整数
if QuickPower(ran, x-1, x) != 1:
return False
return True def Solovay_Stassen(x, T): # Solovay_Stassen素性判定
if x < 2:
return False
if x <= 3:
return True
if x%2 == 0 or x%3 == 0:
return False
for i in range(T): # 随机选择T个整数
ran = random.randint(2, x-2)
r = QuickPower(ran, (x-1)//2, x)
if r != 1 and r != x-1:
return False
if r == x-1:
r = -1
if r != Jacobi(ran, x):
return False
return True def MillerRabin(x, ran): # x-1 = 2^s*t
tx = x-1
s2 = tx&(~tx+1) # 取出最后一位以1开头的二进制 即2^s
r = QuickPower(ran, tx//s2, x)
if r == 1 or r == tx:
return True
while s2>1: # 从2^s -> 2^1 循环s次
r = (r*r)%x
if r == 1:
return False
if r == tx:
return True
s2 >>= 1
return False def MillerRabin_init(x, T): #Miller-Rabin素性判定
if x < 2:
return False
if x <= 3:
return True
if x%2 == 0 or x%3 == 0:
return False
for i in range(T): # 随机选择T个整数
ran = random.randint(2, x-2)
if not MillerRabin(x, ran):
return False
return True def CRT(b, m, n): # calc x = b[] % m[]
M = 1
for i in range(n):
M *= m[i]
ans = 0
for i in range(n):
ans += b[i] * M // m[i] * Exgcd(M//m[i], m[i])
return ans%M
以上作为半个学期来数论学习的一个小结,也许以后难以再系统的学习数论了。略伤感咿
—— 多谢信息安全数学基础的老师
数论基础算法总结(python版)的更多相关文章
- 字符串匹配算法之 kmp算法 (python版)
字符串匹配算法之 kmp算法 (python版) 1.什么是KMP算法 KMP是三位大牛:D.E.Knuth.J.H.MorriT和V.R.Pratt同时发现的.其中第一位就是<计算机程序设计艺 ...
- 二分查找算法(Python版)
[本文出自天外归云的博客园] 记性不好(@.@),所以平时根本用不到的东西就算学过如果让我去想也会需要很多时间(*.*)! 二分查找算法 在一个有序数组中查找元素最快的算法,也就是折半查找法,先找一个 ...
- 数据结构与算法(python版)
ADT抽象数据类型(ADT:Abstract Data Type):ADT是对数据进行处理的一种逻辑描述,并不涉及如何实现这些处理. 同一ADT可以采用不同的数据结构来实现:1.采用程序设计语言的控制 ...
- 数据结构与算法(python版)教程
算法的性质 算法的描述 算法的设计与分析
- 从BZOJ2242看数论基础算法:快速幂,gcd,exgcd,BSGS
LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\) ...
- 北京大学公开课《数据结构与算法Python版》
之前我分享过一个数据结构与算法的课程,很多小伙伴私信我问有没有Python版. 看了一些公开课后,今天特向大家推荐北京大学的这门课程:<数据结构与算法Python版>. 课程概述 很多同学 ...
- 你也可以手绘二维码(二)纠错码字算法:数论基础及伽罗瓦域GF(2^8)
摘要:本文讲解二维码纠错码字生成使用到的数学数论基础知识,伽罗瓦域(Galois Field)GF(2^8),这是手绘二维码填格子理论基础,不想深究可以直接跳过.同时数论基础也是 Hash 算法,RS ...
- Python基础教程(第2版 修订版) pdf
Python基础教程(第2版 修订版) 目录 D11章快速改造:基础知识11.1安装Python11.1.1Windows11.1.2Linux和UNIX31.1.3苹果机(Macintosh)41. ...
- 【数据结构与算法Python版学习笔记】引言
学习来源 北京大学-数据结构与算法Python版 目标 了解计算机科学.程序设计和问题解决的基本概念 计算机科学是对问题本身.问题的解决.以及问题求解过程中得出的解决方案的研究.面对一 个特定问题,计 ...
随机推荐
- windows安装redis, php5.5
全套安装包地址 http://download.csdn.net/detail/whellote/9572797 解压 redis-2.2.5-win32-win64, 将里面的内容拷贝到j:/r ...
- 设置eclipse启动时所需要的jdk
eclipse启动时默认的时环境变量中的JDK,但如果环境变量中的jdk版本比较低,那么eclipse是启动不了的, 比如系统中运行的程序中使用的是jdk1.7,但eclipse版本2018需要jdk ...
- @Transactional(rollbackFor=Exception.class)的使用
转载: java阿里巴巴规范提示:方法[edit]需要在Transactional注解指定rollbackFor或者在方法中显示的rollback. 先来看看异常的分类 error是一定会回滚的 这里 ...
- 国内Hadoop相关的开源项目
1.BC-Hadoop:中国移动Hadoop工具链打包 https://github.com/cmri/bc-hadoop2.0 孵化阶段,将成为一个通用的开源Hadoop平台 2.BC-BSP:中国 ...
- python之路 django基础
Python的WEB框架有Django.Tornado.Flask 等多种,Django相较与其他WEB框架其优势为:大而全,框架本身集成了ORM.模型绑定.模板引擎.缓存.Session等诸多功能. ...
- IOS开发如何入门
说到 iOS 开发,自己学得也很浅.不过至少独立一人完成了一个应用的开发到项目上线整个过程.分享一下自己的建议和想法. 首先建议阅读 Start Developing iOS Apps Today,你 ...
- win下安装wget以及使用wget
1. 安装wget网址:http://gnuwin32.sourceforge.net/packages/wget.htm下载http://downloads.sourceforge.net/gnuw ...
- BitmapFactory.decodeStream(inputStream)返回null的解决方法
场景:Android,通过inputStream从网络上获取图片 随后两次使用BitmapFactory对InputStream进行操作,一次获取宽高,另一次缩放 但是在缩放时,发现inputStre ...
- javascript 理解对象--- 属性类型
ECMA-262 把对象定义为:无序属性的集合,其属性可以包含基本值.对象或者函数: var Person = { name:"wsc", age :"25", ...
- MLlib1.6指南笔记
MLlib1.6指南笔记 http://spark.apache.org/docs/latest/mllib-guide.html spark.mllib RDD之上的原始API spark.ml M ...