Balls Rearrangement

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 25    Accepted Submission(s): 8

Problem Description
  Bob has N balls and A boxes. He numbers the balls from 0 to N-1, and numbers the boxes from 0 to A-1. To find the balls easily, he puts the ball numbered x into the box numbered a if x = a mod A.   Some day Bob buys B new boxes, and he wants to rearrange the balls from the old boxes to the new boxes. The new boxes are numbered from 0 to B-1. After the rearrangement, the ball numbered x should be in the box number b if x = b mod B.
  This work may be very boring, so he wants to know the cost before the rearrangement. If he moves a ball from the old box numbered a to the new box numbered b, the cost he considered would be |a-b|. The total cost is the sum of the cost to move every ball, and it is what Bob is interested in now.
 
Input
  The first line of the input is an integer T, the number of test cases.(0<T<=50) 
  Then T test case followed. The only line of each test case are three integers N, A and B.(1<=N<=1000000000, 1<=A,B<=100000).
 
Output
  For each test case, output the total cost.
 
Sample Input
3
1000000000 1 1
8 2 4
11 5 3
 
Sample Output
0
8
16
 
Source
 
Recommend
zhuyuanchen520
 

相当于求 abs(i%A - i%B)对i从0~N-1求和

题目给了N,A,B;

数据比较大。

首先可以确定的是A,B的LCM是一个循环。

然后一段的话,用模拟,相同段直接跳过求解,

#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#include <math.h>
using namespace std;
long long gcd(long long a,long long b)
{
if(b==)return a;
else return gcd(b,a%b);
}
long long lcm(long long a,long long b)
{
return a/gcd(a,b)*b;
}
long long calc(int n,int a,int b)
{
long long ans = ;
int i = ;
int ta=,tb=;
int p = ;
while(i < n)
{
if(ta+a >= n && tb+b >= n)
{
ans += (long long)(n-i)*p;
i = n;
continue;
}
if(ta+a < tb+b)
{
ans += (long long)p*(ta+a-i);
i = ta+a;
p = i - tb;
ta+=a;
}
else if(ta+a==tb+b)
{
ans+= (long long)p*(ta+a-i);
i = ta+a;
ta+=a;
tb+=b;
p = ;
}
else
{
ans += (long long)p*(tb+b-i);
i = tb+b;
tb+= b;
p = i-ta;
}
}
return ans;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
int n,a,b;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&a,&b);
if(a==b)
{
printf("0\n");
continue;
}
if(a < b)swap(a,b);
long long LCM = lcm(a,b);
if(LCM >= n)
{
printf("%I64d\n",calc(n,a,b));
continue;
}
long long tmp = calc(LCM,a,b);
long long ans = tmp * (n/LCM)+calc(n%LCM,a,b);
printf("%I64d\n",ans);
}
return ;
}

HDU 4611 Balls Rearrangement(2013多校2 1001题)的更多相关文章

  1. HDU 4696 Answers (2013多校10,1001题 )

    Answers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total S ...

  2. HDU 4666 Hyperspace (2013多校7 1001题 最远曼哈顿距离)

    Hyperspace Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  3. HDU 4643 GSM (2013多校5 1001题 计算几何)

    GSM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submiss ...

  4. HDU 4686 Arc of Dream (2013多校9 1001 题,矩阵)

    Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  5. HDU 4611 Balls Rearrangement 数学

    Balls Rearrangement 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4611 Description Bob has N balls ...

  6. HDU 4705 Y (2013多校10,1010题,简单树形DP)

    Y Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submiss ...

  7. HDU 4704 Sum (2013多校10,1009题)

    Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submi ...

  8. HDU 4699 Editor (2013多校10,1004题)

    Editor Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Su ...

  9. HDU 4678 Mine (2013多校8 1003题 博弈)

    Mine Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submis ...

随机推荐

  1. HOJ 1108

    题目链接:HOJ-1108 题意为给定N和M,找出最小的K,使得K个N组成的数能被M整除.比如对于n=2,m=11,则k=2. 思路是抽屉原理,K个N组成的数modM的值最多只有M个. 具体看代码: ...

  2. selenium grid结构图

    调用 Selenium-Grid 的基本结构图如下: 上面是使用 selenium-grid 的一种普通方式,仅仅使用了其支持的分布式执行的功能,即当你同时需 要测试用例比较多时,可以平行的执行这些用 ...

  3. Python实现好友全头像的拼接

    微信好友全头像 话不多说,直接上代码 import itchat import math import PIL.Image as Image import os itchat.auto_login() ...

  4. Django 1.10文档中文版Part2

    目录 2.5 第一个Django app,Part 3:视图和模板 2.5.1 概览 2.5.2 编写更多的视图 2.5.3 编写能实际干点活的视图 2.5.4 404错误 2.5.5 使用模板系统 ...

  5. acm专题---拓扑排序+优先队列

    struct node{ int id; int cnt; node(int _id,int _cnt):id(_id),cnt(_cnt){} bool operator<(node a) c ...

  6. 构建基于TCP的应用层通信模型

    各层的关系如下图,表述的是两个应用或CS间通信的过程:   通常使用TCP构建应用时,需要考虑传输层的通信协议,以便应用层能够正确识别消息请求.比如,一个请求的内容很长(如传文件),那肯定要分多次发送 ...

  7. IIS 部署nodejs

    1.Node.js 2.IIS的URL Rewrite模块 3.iisnode

  8. Redis 在Centos7下配置开机自启动

    设置Redis开机启动需要如下几个步骤: 编写配置脚本 [ vim /etc/init.d/redis ] #!/bin/sh # # Simple Redis init.d script conce ...

  9. Java8所有的包介绍(由英文文档翻译而来)

    转载: Java8所有的包介绍(由英文文档翻译而来)

  10. Shiro切入Spring的方式

    在springMVC中要使用shiro,一般都遵循下面的配置: applicationContext-shiro.xml <bean id="shiroFilter" cla ...