数论 CF230B T-primes
CF230B T-primes
我们知道质数是只有两个不同的正数因数的正整数。相似的,我们把一个正整数 t 叫做 T质数,如果 t 恰好有三个不同的正整数因数。
你被给了一个含有 n 个正整数的数组。你要给其中所有的数判断它是否是 T质数。
可以知道一个质数的完全平方数有且只有三个因子。
然后这题就水了。
线性筛出1到$\sqrt{a_i} $的素数,判断就行了。
code:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#define int long long
using namespace std;
inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
}
int n,tot;
int a[100017];
int prime[1000017];
int isprime[1000017];
void Euler(){
memset(isprime,1,sizeof isprime);
isprime[1]=0;
for(int i=2;i<=1000000;i++){
if(isprime[i])
prime[++tot]=i;
for(int j=1;j<=tot&&i*prime[j]<=1000000;j++){
isprime[i*prime[j]]=0;
if(i%prime[j]==0)break;
}
}
}
signed main(){
n=read(); Euler();
for(int i=1;i<=n;i++)a[i]=read();
for(int i=1;i<=n;i++){
int tmp=sqrt(a[i]+0.5);
if(isprime[tmp]){
if(tmp*tmp==a[i])puts("YES");
else puts("NO");
}
else puts("NO");
}
return 0;
}
数论 CF230B T-primes的更多相关文章
- UVA 10168 Summation of Four Primes(数论)
Summation of Four Primes Input: standard input Output: standard output Time Limit: 4 seconds Euler p ...
- Leetcode 204 Count Primes 数论
题意:统计小于n的质数个数. 作为一个无节操的楼主,表示用了素数筛法,并没有用线性素数筛法. 是的,素数筛法并不是该题最佳的解法,线性素数筛法才是. 至于什么是素数筛法,请百度吧. class Sol ...
- SPOJ AMR11E Distinct Primes 基础数论
Arithmancy is Draco Malfoy's favorite subject, but what spoils it for him is that Hermione Granger i ...
- Lucas的数论题解
Lucas的数论 reference 题目在这里> < Pre 数论分块 默认向下取整时. 形如\(\sum\limits_{i=1}^n f\left( \frac{n}{i}\righ ...
- ACM HDU Primes(素数判断)
Problem Description Writea program to read in a list of integers and determine whether or not eachnu ...
- RSA算法原理——(2)RSA简介及基础数论知识
上期为大家介绍了目前常见加密算法,相信阅读过的同学们对目前的加密算法也算是有了一个大概的了解.如果你对这些解密算法概念及特点还不是很清晰的话,昌昌非常推荐大家可以看看HTTPS的加密通信原理,因为HT ...
- 【HDU】2866:Special Prime【数论】
Special Prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- 51nod1238. 最小公倍数之和 V3(数论)
题目链接 https://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题解 本来想做个杜教筛板子题结果用另一种方法过了...... 所谓 ...
- HDU 4569 Special equations(枚举+数论)(2013 ACM-ICPC长沙赛区全国邀请赛)
Problem Description Let f(x) = anxn +...+ a1x +a0, in which ai (0 <= i <= n) are all known int ...
随机推荐
- Chrome谷歌浏览器屏蔽百度搜索右侧广告推荐方法
先上图百度广告,其实屏蔽广告很简单 主要分成以下三步: 下载Adblock Plus插件 安装Adblock Plus插件 开启屏蔽 一.下载Adblock Plus插件(官网离线版) 二.安装Adb ...
- JS回调函数深入篇
<有些错别字> 在Javascript中,函数是第一类对象,这意味着函数可以像对象一样按照第一类管理被使用.既然函数实际上是对象:它们能被“存储”在变量中,能作为函数参数被传递,能在函数中 ...
- 什么是响应式编程——响应式Spring的道法术器
响应式编程之道 1.1 什么是响应式编程? 在开始讨论响应式编程(Reactive Programming)之前,先来看一个我们经常使用的一款堪称“响应式典范”的强大的生产力工具——电子表格. 举个简 ...
- 自然语言处理之中文分词器-jieba分词器详解及python实战
(转https://blog.csdn.net/gzmfxy/article/details/78994396) 中文分词是中文文本处理的一个基础步骤,也是中文人机自然语言交互的基础模块,在进行中文自 ...
- winfrom保存图片,将文件夹中图片放入listview,与撤回操作
之前那些操作完成对图片的修改之后,就是要保存图片了. 这里保存用到一个SaveFileDialog控件,可以获取用户选择的保存文件的路径. ) { SaveFileDialog saveImageDi ...
- 利用django中间件CsrfViewMiddleware防止csrf攻击
一.在django后台处理 1.将django的setting中的加入django.contrib.messages.middleware.MessageMiddleware,一般新建的django项 ...
- 1256 Anagram
题目链接: http://poj.org/problem?id=1256 题意: 根据自定义的字典序: 'A'<'a'<'B'<'b'<...<'Z'<'z' 和输 ...
- 如何注册facebook应用
最近项目中要做第三方登录,其中就有facebook的,下面讲解一下如何在facebook中创建应用 1.登录facebook的开发者平台(https://developers.facebook.com ...
- 数据库SQL优化大总结之 百万级数据库优化方案(转)
出处:http://www.cnblogs.com/yunfeifei/p/3850440.htm 网上关于SQL优化的教程很多,但是比较杂乱.近日有空整理了一下,写出来跟大家分享一下,其中有错误和不 ...
- mysql - 简单的触发器和存储过程
delimiter // drop PROCEDURE proc_member_preprocessor;// )) main:BEGIN SELECT COUNT(uid) INTO @proc_h ...