lightoj 1215 Finding LCM

链接http://www.lightoj.com/volume_showproblem.php?problem=1215

题意:已知 a, b, l 和 lcm(a, b, c) = l ,求最小的 c 的值。

思路:先找 l 的素因子并判断此因子是否为 a, b 的素因子,如果是,则判断他们各自的欧拉值的大小。因为 c 最大可能等于 l 的值,所以刚开始先把 l 的值赋给 c 。

  当 l 中的某个素因子的欧拉值(lr1)大于 a,b 中相同的素因子的欧拉值(ar1, br1)时,c中肯定含有次素因子并且欧拉值(cr1 >= lr1 ),然而 c 是 l 的因子,所以(cr1 <= lr1 ), 所以 cr1 == lr1 ,不用进行处理。

  当 l 中的某个素因子的欧拉值(lr1)等于(最大就是等于,不可能小于) a,b 中相同的素因子的欧拉值(ar1, br1)时,c中不一定含有次素因子,当 c 要取最小时,就可以不含有这个素因子,所以就把 c 中的 此素因子除干净。

代码

 #include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; typedef long long LL;
const int N = ;
bool tag[N];
int prime[];
int k = ;
LL a, b ,c, l; LL stein(LL a, LL b) //stein 公式求最大公约数
{
if(a < b) swap(a, b);
if(!b) return a;
if(!(a&) && !(b&)) return * stein(a>>, b>>);
if(!(a&)) return stein(a>>, b);
if(!(b&)) return stein(a, b>>);
return stein((a-b)>>, b);
}
//当然,你也可以用欧几里得
LL gcd(LL a, LL b)
{
return b ? gcd(b, a%b) : a;
} int euler(LL *n, int m) //计算欧拉函数: 此函数中 n 值的变化会传回原处
{
int e = ;
while(!((*n) % m))
e++, (*n) /= m;
return e;
} void prm() //素数表(线性素数筛法)
{
int i,j;
memset(tag, , sizeof(tag));
tag[] = , prime[k++] = ;
for(i = ; i < N; i += )
{
if(!tag[i]) prime[k++] = i;
for(j = ; j < k && i*prime[j] < N; ++j)
{
tag[i*prime[j]] = ;
if(i%prime[j] == ) break;
}
}
} void ct(int q) //计算c值
{
int i, cnta, cntb, cntL, cnt0, cs = ;
c = l; // c 最大可能等于c, 先赋值为c,遇到情况在做除法减小它
if(l % (a/stein(a,b)*b)) //不可能的情况:l 不是(a, b)的最小公倍数的倍数
{
printf("Case %d: impossible\n", q);
return;
}
for(i=; i < k && (prime[i] <= a || prime[i] <= b); i++) //
{
cnta = cntb = ;
if(!(l%prime[i])) //是某个素数倍数的时候
{
cntL = euler(&l, prime[i]); // l 部分欧拉函数值
if(!(a%prime[i])) // 当这个素数也是a 的因子的时候
cnta = euler(&a, prime[i]); // a 的部分欧拉函数值
if(!(b%prime[i])) //当这个素数也是b 的因子的时候
cntb = euler(&b,prime[i]); //同 a 的操作
cnt0 = cnta > cntb ? cnta : cntb; // 最小公倍数当然是取值较大欧拉值
/*
a,b里边因子的欧拉值肯定要小于等于l的相同的因子的欧拉值的,当相等时,c要取最小就必须不含此因子
当a, b 中的因子的欧拉值都小于l中的时,c中相同因子的欧拉值必须大于等于l中的值,最小当然取等于啦
这也是为什么下面的只处理等于的情况
*/
if(cntL == cnt0)
while(cnt0--)
c /= prime[i];
}
}
if(a > && euler(&l, a) <= ) c /= a; //当 a 中含有大于1000的素数时的处理a
if(b > && euler(&l, b) <= ) c /= b; //当 b 中含有大于1000的素数时的处理b
printf("Case %d: %lld\n", q, c);
} int main()
{
int t, q=;
prm();
scanf("%d", &t);
while(t--)
{
scanf("%lld%lld%lld", &a, &b, &l);
ct(q++);
}
return ;
}

lightoj 1215的更多相关文章

  1. Finding LCM LightOJ - 1215 (水题)

    这题和这题一样......只不过多了个数... Finding LCM LightOJ - 1215 https://www.cnblogs.com/WTSRUVF/p/9316412.html #i ...

  2. LightOj 1215 - Finding LCM(求LCM(x, y)=L中的 y )

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1215 题意:已知三个数a b c 的最小公倍数是 L ,现在告诉你 a b  L 求最 ...

  3. LightOj 1215 Finding LCM

    Discription LCM is an abbreviation used for Least Common Multiple in Mathematics. We say LCM (a, b, ...

  4. LightOj 1236 - Pairs Forming LCM (分解素因子,LCM )

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意:给你一个数n,求有多少对(i,  j)满足 LCM(i, j) = n, ...

  5. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  6. LightOj 1298 - One Theorem, One Year(DP + 欧拉)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1298 题意:给你两个数 n, p,表示一个数是由前 k 个素数组成的,共有 n 个素数 ...

  7. 1214 - Large Division -- LightOj(大数取余)

    http://lightoj.com/volume_showproblem.php?problem=1214 这就是一道简单的大数取余. 还想还用到了同余定理: 所谓的同余,顾名思义,就是许多的数被一 ...

  8. LightOJ Beginners Problems 部分题解

    相关代码请戳 https://coding.net/u/tiny656/p/LightOJ/git 1006 Hex-a-bonacci. 用数组模拟记录结果,注意取模 1008 Fibsieve's ...

  9. LightOJ 1341 唯一分解定理

    Aladdin and the Flying Carpet Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld &a ...

随机推荐

  1. 天马行空DevOps-Dev平台建设概述

    概述 DevOps(Development和Operations的组合词)是一组过程.方法与系统的统称,用于促进开发(应用程序/软件工程).技术运营和质量保障(QA)部门之间的沟通.协作与整合.它是一 ...

  2. 75.[LeetCode] Sort Colors

    Given an array with n objects colored red, white or blue, sort them in-place so that objects of the ...

  3. 算法笔记(c++)-使用递归函数逆序一个栈

    ---恢复内容开始--- 使用递归函数逆序一个栈 题目:使用递归函数,不借助其他数据结构逆序一个栈. 我的思路:使用递归函数保存栈中变量. 递归函数分两个,一个获取并移除栈底元素,另一个负责逆序.其实 ...

  4. Bean的装配

    1.可以从ApplicationContext上下文获取和bean工厂获取容器,bean工厂只建议在移动端应用使用. 2.如果使用的是applicationContext配置的是bean,如果作用域是 ...

  5. pager-taglib2.0中文传参乱码问题

    1.重现问题 在web项目中有时会用到pager-taglib来作为分页的标签,如上图红色框标识所示,当我们需要把页面参数保持的时候我们会在<pg:param />标签中把参数进行传递. ...

  6. 0428数字口袋精灵app优化

    "数字口袋精灵app"优化 目录: 一.项目github总仓库推送 二.开发成员 三.分工与合作 四.各模块成果 五.团队成员贡献分 内容: 一.项目github总仓库: http ...

  7. BETA阶段第一天

    1.提供当天站立式会议照片一张 2.每个人的工作 今天完成工作 林一心 服务器调试 张杭镖 数据库调整 赵意 前端设计 江鹭涛 前端设计 3.发布项目燃尽图 4.每日每人总结 林一心:服务器端的配置不 ...

  8. Objective-C Json转Model(利用Runtime特性)

    封装initWithNSDictionary:方法 该方法接收NSDictionary对象, 返回PersonModel对象. #pragma mark - 使用runtime将JSON转成Model ...

  9. SSL 重点SSL会话步骤

    SSL.TLS协议 在wiki百科查看下,两者的区别 实现SSL协议的软件 OpenSSL开源软件 SSL会话步骤 1:客户端向服务端索取CA证书,然后验证证书   2:客户端与服务端约定一个通信中使 ...

  10. Servlet处理表单