NYOJ--69
数的长度
原题链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=69
分析:先看看求n!的朴素算法,用大整数乘法来实现。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int wei[];
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
memset(wei,,sizeof(wei));
int cnt=;
scanf("%d",&n);
wei[cnt]=;
for(int i=;i<=n;i++)
{
int carry=;
for(int j=;j<=cnt;j++)
{
int t=carry;
carry=(wei[j]*i+t)/;
wei[j]=(wei[j]*i+t)%;
}
if(carry)
{
wei[++cnt]=carry;
wei[cnt]=carry%;
carry/=;
}
while(carry>=)
{
wei[++cnt]=carry%;
carry/=;
}
if(carry)
wei[++cnt]=carry;
}
printf("%d\n",cnt+);
}
return ;
}
分析:设n!=10^M,则log10(n!)=M=log10(1)+log10(2)+……,然后向上取整即可!
也可以直接套公式!n!的位数 = log10(2*PI*n)/2+n*log10(n/e)。或者 = log10(sqrt(2*PI*n)) + n*log10(n/e)。
stirling公式证明: http://episte.math.ntu.edu.tw/articles/mm/mm_17_2_05/index.html
附:PI=acos(-1.0)=2acos(0.0).
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int fac[];
void wei(int n)
{
double M=;
fac[]=;
fac[]=;
for(int i=;i<=n;i++)
{
M+=log10(i);
if(M-(int)M!=)
fac[i]=(int)M+;
else
fac[i]=(int)M;
}
}
int main()
{
wei();
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("%d\n",fac[n]);
}
return ;
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define pi acos(-1.0)
using namespace std;
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
double ans=(log10(*pi*n))/+n*log10(n/exp(1.0));
printf("%d\n",(int)ans+);
}
return ;
}
NYOJ--69的更多相关文章
- nyoj 69 数的长度
数的长度 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出 ...
- NYOJ 69 数的长度(数学)
数的长度 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出 ...
- NYOJ 1272 表达式求值 第九届省赛 (字符串处理)
title: 表达式求值 第九届省赛 nyoj 1272 tags: [栈,数据结构] 题目链接 描述 假设表达式定义为: 1. 一个十进制的正整数 X 是一个表达式. 2. 如果 X 和 Y 是 表 ...
- NYOJ 1007
在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...
- NYOJ 998
这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...
- P87LPC760/61/62/64/67/68/69/78/79芯片解密单片机破解价格
NXP恩智浦P87LPC760/61/62/64/67/68/69/78/79芯片解密单片机破解 NXP LPC700系列单片机解密型号: P87LPC759.P87LPC760.P87LPC761. ...
- NYOJ 333
http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...
- 69个经典Spring面试题和答案
Spring 是个java企业级应用的开源开发框架.Spring主要用来开发Java应用,但是有些扩展是针对构建J2EE平台的web应用.Spring 框架目标是简化Java企业级应用开发,并通过PO ...
- NYOJ 99单词拼接(有向图的欧拉(回)路)
/* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...
- java.lang.NullPointerException org.apache.struts2.impl.StrutsActionProxy.getErrorMessage(StrutsActionProxy.java:69)
采用SSH框架时出现了 java.lang.NullPointerException org.apache.struts2.impl.StrutsActionProxy.getErrorMessage ...
随机推荐
- MongoDB 极简实践入门
原作者StevenSLXie; 原链接(https://github.com/StevenSLXie/Tutorials-for-Web-Developers/blob/master/MongoDB% ...
- ZT-----用javascrip写一个区块链
几乎每个人都听说过像比特币和以太币这样的加密货币,但是只有极少数人懂得隐藏在它们背后的技术.在这篇博客中,我将会用JavaScript来创建一个简单的区块链来演示它们的内部究竟是如何工作的.我将会称之 ...
- TW实习日记:第十天
今天任务很简单,就是出品项目的时间轴显示页面和动态路由设置.其实时间轴页面很快就做完了,在做完处理完数据之后,然而有很多细节需要打磨,这就又考验了我面向搜索引擎编程的能力,根据需求百度了很多css的样 ...
- SVN部署与简单使用
原文发表于cu:2016-05-24 参考文档: http://www.tuicool.com/articles/Yv2iyu7 http://www.centoscn.com/CentosServe ...
- 简述AQS原理
这是一道面试题:简述AQS原理 AQS核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态.如果被请求的共享资源被占用,那么就需要一套线程阻塞 ...
- 15 分钟用 ML 破解一个验证码系统
人人都恨验证码——那些恼人的图片,显示着你在登陆某网站前得输入的文本.设计验证码的目的是,通过验证你是真实的人来避免电脑自动填充表格.但是随着深度学习和计算机视觉的兴起,现在验证码常常易被攻破. 我拜 ...
- Scrum立会报告+燃尽图(十一月十九日总第二十七次):功能开发与修复上一阶段bug
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...
- Java 常用类String类、StringBuffer类
常用类 String类.StringBuffer类 String代表不可变的字符序列 "xxxxxxx"为该类的对象 举例(1) public class Test { publi ...
- 【并查集】 不相交集合 - 并查集 教程(文章作者:Slyar)
最近写了一个多星期的并查集,一瞬间贴出这么多解题报告,我想关于并查集的应用先告一段落吧,先总结一下. 在网上看到一篇关于并查集比较好的教程(姑且允许我这么说吧),不转过来是在可惜.献给爱学习的你 文章 ...
- bat获取当前日期的前一天
批处理做这样的事情很麻烦,你可以用cscript来实现,比如把下面的内容保存为a.js文件:var d=new Date();d.setTime(d.getTime()-24*3600*1000);v ...