Kalibr installation tutorial

I was confused about installing Kalibr, but there is no even one hint in README.md. I just put them in the catkin_ws, in which so many ROS packages are also there. Unsuccessfully, it can't be compiled one by one package by the command catkin_make -DCATKIN_WHITELIST_PACKAGE="PACKAGE_NAME". It means a good choice is to build another ROS workspace in case of rebuilding others in the same workspace.


Resiquite:

sudo apt-get install python-setuptools python-rosinstall ipython libeigen3-dev libboost-all-dev doxygen libopencv-dev ros-kinetic-vision-opencv ros-kinetic-image-transport-plugins ros-kinetic-cmake-modules python-software-properties software-properties-common libpoco-dev python-matplotlib python-scipy python-git python-pip ipython libtbb-dev libblas-dev liblapack-dev python-catkin-tools libv4l-dev

sudo pip install python-igraph --upgrade


Warning: If having done catkin_make at first then must run the following command.

catkin clean -bdy


cd ~
mkdir -p kalibr_ws/src
cd ~/kalibr_ws
source /opt/ros/kinetic/setup.bash
catkin init
catkin config --extend /opt/ros/kinetic
catkin config --merge-devel # Necessary for catkin_tools >= 0.4. catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release
cd ~/kalibr_ws/src
git clone https://github.com/ethz-asl/kalibr.git
cd ..
catkin build -DCMAKE_BUILD_TYPE=Release -j4

Output seems like this:

Finished  <<< kalibr                                        [ 16.1 seconds ]
[build] Summary: All 37 packages succeeded!
[build] Ignored: None.
[build] Warnings: 21 packages succeeded with warnings.
[build] Abandoned: None.
[build] Failed: None.
[build] Runtime: 14 minutes and 53.4 seconds total.
[build] Note: Workspace packages have changed, please re-source setup files to use them.

source ~/kalibr_ws/devel/setup.bash

Update:


Traceback (most recent call last):
File "../python/kalibr_calibrate_cameras", line 6, in <module>
import sm
ImportError: No module named sm

**Solution: **

sudo pip install sm

then rebuild kalibr.


References:

[1] kalibr教程

[2] Installing and Configuring Your ROS Environment

[3] ethz-asl/kalibr

[4] catkin_make vs catkin build

[5] https://github.com/ethz-asl/kalibr/wiki/installation

[6] 完整版用kalibr标定 camera imu

Multiple camera calibration


roslaunch realsense2_camera rs_camera.launch
rosrun topic_tools throttle messages /camera/color/image_raw 4.0 /color
rosbag record -O rs_cam_hz4 /color

Which distortiong model should be choose for Realsense D435i? From all I know, a factory calibration setup of D435i looks like: (You can /usr/local/bin/rs-sensor-control, type 0, 1, 2, 91 etc to see)

Principal Point         : 322.424, 237.813
Focal Length : 617.521, 617.576
Distortion Model : Brown Conrady
Distortion Coefficients : [0,0,0,0,0]

And according to the dorodnic, of course a equidistant distortion model could be used. (But r1 & r2 are needed in realsense comfig in vins. So the best distortion model must be radial-tangential (radtan))

Yes, these are supposed to be zero for the D400. We consider adding coefficient estimation to the RGB calibration to reduce the distortion (by about 1 pixel at extremes), but at the moment projection without coefficients is the most accurate you can do (we are not calibrating and then ignoring the coefficients, we estimate fx, fy, ppx and ppy without them)

cd ~/kalibr_ws/src/kalibr/aslam_offline_calibration/kalibr/data
../python/kalibr_calibrate_cameras --target april_6x6_50x50cm.yaml --bag rs_cam_hz4.bag --models pinhole-equi --topics /color

Note that in the bag file there are up to 800 images, but it only 39. Maybe that's enough for calibration?

Output:

Calibration complete.

[ WARN] [1556719991.003758]: Removed 26 outlier corners.

Processed 826 images with 39 images used
Camera-system parameters:
cam0 (/color):
type: <class 'aslam_cv.libaslam_cv_python.EquidistantDistortedPinholeCameraGeometry'>
distortion: [ 0.3044413 2.04741574 -11.06112629 18.6743852 ] +- [ 0.0320288 0.46759766 2.76374537 5.41971393]
projection: [ 604.9671891 602.10506316 325.8395051 238.35406753] +- [ 10.62286295 10.41921913 1.68531874 1.43868064]
reprojection error: [-0.000000, -0.000000] +- [0.153693, 0.138547] Results written to file: camchain-rs_cam_hz4.yaml
Detailed results written to file: results-cam-rs_cam_hz4.txt

Result:

camchain-rs_cam_hz4.yaml

cam0:
cam_overlaps: []
camera_model: pinhole
distortion_coeffs: [0.3044413037380324, 2.0474157424478348, -11.061126286843251,
18.67438520203368]
distortion_model: equidistant
intrinsics: [604.9671890973748, 602.1050631617551, 325.83950509989114, 238.35406753467785]
resolution: [640, 480]
rostopic: /color

Compared to the default settings, assumes our result is accurate. The reprojection error seems like good too.

Reference:

[1] Multiple camera calibration

[2] [相机标定]RealSense D435i相机标定

[3] rs2_intrinsics coeffs[] all 0 by default #1430

[4] Camera models

IMU calibration


imu_utils from HKUST

Protecting from error:

CMake Warning at /opt/ros/kinetic/share/catkin/cmake/catkinConfig.cmake:76 (find_package):
Could not find a package configuration file provided by "code_utils" with
any of the following names:
code_utilsConfig.cmake
code_utils-config.cmake
Add the installation prefix of "code_utils" to CMAKE_PREFIX_PATH or set
"code_utils_DIR" to a directory containing one of the above files. If
"code_utils" provides a separate development package or SDK, be sure it has
been installed.

Put code_utils in the workspace, catkin_make first.

Then do the same for imu_utils.

Result (BMI055 is the IMU D435i is using):

BMI055_imu_param.yaml

%YAML:1.0
---
type: IMU
name: BMI055
Gyr:
unit: " rad/s"
avg-axis:
gyr_n: 6.0673370376614875e-03
gyr_w: 3.6211951458325785e-05
x-axis:
gyr_n: 5.4501442406047970e-03
gyr_w: 4.0723401163659986e-05
y-axis:
gyr_n: 5.9380128602687073e-03
gyr_w: 2.9388325769986972e-05
z-axis:
gyr_n: 6.8138540121109601e-03
gyr_w: 3.8524127441330383e-05
Acc:
unit: " m/s^2"
avg-axis:
acc_n: 3.3621979208052800e-02
acc_w: 9.8256589971851467e-04
x-axis:
acc_n: 3.6095477320173631e-02
acc_w: 9.6831827726998488e-04
y-axis:
acc_n: 3.4696437020780901e-02
acc_w: 1.3092042863834673e-03
z-axis:
acc_n: 3.0074023283203882e-02
acc_w: 6.7017513550209160e-04

[1] imu标定 imu_tk

[2] Imu_tk算法流程

[3] catkin_make failed #3

[4] imu_utils

[5] code_utils

camera/IMU calibration


roscd realsense2_camera/
roslaunch realsense2_camera rs_camera.launch
rostopic hz /camera/imu
rostopic hz /camera/color/image_raw

rosrun topic_tools throttle messages /camera/color/image_raw 20.0 /color

rosrun topic_tools throttle messages /camera/imu 200.0 /imu

Some problem:

In the rs_camera.launch, but when I check the frequency: IMU is 150 Hz and the camera is 15FPS. It can't be slow down to the frequency needed.

  <arg name="color_fps"           default="30"/>
<arg name="gyro_fps" default="200"/> <!-- 200 or 400-->
<arg name="accel_fps" default="250"/> <!-- 63 or 250-->

The best frequency is 200 Hz and 30 Hz. Of course, others are still good.

rosbag record -O rs_cam15hz_imu150hz.bag /color /imu

camchain-rs_cam_hz4.yaml

cam0:
cam_overlaps: []
camera_model: pinhole
distortion_coeffs: [0.3044413037380324, 2.0474157424478348, -11.061126286843251,
18.67438520203368]
distortion_model: equidistant
intrinsics: [604.9671890973748, 602.1050631617551, 325.83950509989114, 238.35406753467785]
resolution: [640, 480]
rostopic: /color

imu.yaml

rostopic: /imu
update_rate: 150.0 #Hz accelerometer_noise_density: 3.3621979208052800e-02 #continous
accelerometer_random_walk: 9.8256589971851467e-04
gyroscope_noise_density: 6.0673370376614875e-03 #continous
gyroscope_random_walk: 3.6211951458325785e-05
roscd kalibr
cd data
cp ~/catkin_ws/src/realsense/realsense2_camera/rs_cam15hz_imu150hz.bag .
../python/kalibr_calibrate_imu_camera --target april_6x6_50x50cm.yaml --cam camchain-rs_cam_hz4.yaml --imu imu-BMI055.yaml --bag rs_cam15hz_imu150hz.bag

Note that when something is wrong with the input data in bagfile, just record another one bagfile.


Initializing
Optimization problem initialized with 101968 design variables and 1079428 error terms
The Jacobian matrix is 2310198 x 458841
[0.0]: J: 1.35165e+06
Exception in thread block: [aslam::Exception] /home/william/kalibr_ws/src/kalibr/aslam_nonparametric_estimation/aslam_splines/src/BSplineExpressions.cpp:447: toTransformationMatrixImplementation() assert(_bufferTmin <= _time.toScalar() < _bufferTmax) failed [1.55677e+09 <= 1.55677e+09 < 1.55677e+09]: Spline Coefficient Buffer Exceeded. Set larger buffer margins!
Exception in thread block: [aslam::Exception] /home/william/kalibr_ws/src/kalibr/aslam_nonparametric_estimation/aslam_splines/src/BSplineExpressions.cpp:447: toTransformationMatrixImplementation() assert(_bufferTmin <= _time.toScalar() < _bufferTmax) failed [1.55677e+09 <= 1.55677e+09 < 1.55677e+09]: Spline Coefficient Buffer Exceeded. Set larger buffer margins!
Exception in thread block: [aslam::Exception] /home/william/kalibr_ws/src/kalibr/aslam_nonparametric_estimation/aslam_splines/src/BSplineExpressions.cpp:447: toTransformationMatrixImplementation() assert(_bufferTmin <= _time.toScalar() < _bufferTmax) failed [1.55677e+09 <= 1.55677e+09 < 1.55677e+09]: Spline Coefficient Buffer Exceeded. Set larger buffer margins!
[ERROR] [1556773048.921808]: Optimization failed!
Traceback (most recent call last):
File "../python/kalibr_calibrate_imu_camera", line 236, in <module>
main()
File "../python/kalibr_calibrate_imu_camera", line 206, in main
iCal.optimize(maxIterations=parsed.max_iter, recoverCov=parsed.recover_cov)
File "/home/william/kalibr_ws/src/kalibr/aslam_offline_calibration/kalibr/python/kalibr_imu_camera_calibration/IccCalibrator.py", line 179, in optimize
raise RuntimeError("Optimization failed!")
RuntimeError: Optimization failed!

Result looks like this:

After Optimization (Results)
==================
Normalized Residuals
----------------------------
Reprojection error (cam0): mean 0.169417479013, median 0.154212672023, std: 0.0973946838993
Gyroscope error (imu0): mean 0.18574054756, median 0.159830346682, std: 0.115913332564
Accelerometer error (imu0): mean 0.169497068217, median 0.145829709726, std: 0.10939033445 Residuals
----------------------------
Reprojection error (cam0) [px]: mean 0.169417479013, median 0.154212672023, std: 0.0973946838993
Gyroscope error (imu0) [rad/s]: mean 0.013802268496, median 0.0118768970357, std: 0.00861345010194
Accelerometer error (imu0) [m/s^2]: mean 0.0697960902289, median 0.0600502633182, std: 0.0450451310679 Transformation T_cam0_imu0 (imu0 to cam0, T_ci):
[[ 0.01542341 -0.99976267 0.01538561 0.00713584]
[ 0.03147917 -0.01489429 -0.99939343 -0.03487332]
[ 0.9993854 0.01589838 0.03124198 -0.05266484]
[ 0. 0. 0. 1. ]] cam0 to imu0 time: [s] (t_imu = t_cam + shift)
0.0334634768386 IMU0:
----------------------------
Model: calibrated
Update rate: 150.0
Accelerometer:
Noise density: 0.0336219792081
Noise density (discrete): 0.411783466011
Random walk: 0.000982565899719
Gyroscope:
Noise density: 0.00606733703766
Noise density (discrete): 0.0743093991988
Random walk: 3.62119514583e-05
T_i_b
[[ 1. 0. 0. 0.]
[ 0. 1. 0. 0.]
[ 0. 0. 1. 0.]
[ 0. 0. 0. 1.]]
time offset with respect to IMU0: 0.0 [s] Saving camera chain calibration to file: camchain-imucam-rs_cam15hz_imu150hz.yaml Saving imu calibration to file: imu-rs_cam15hz_imu150hz.yaml
Detailed results written to file: results-imucam-rs_cam15hz_imu150hz.txt
Generating result report...
/home/william/kalibr_ws/src/kalibr/Schweizer-Messer/sm_python/python/sm/PlotCollection.py:57: wxPyDeprecationWarning: Using deprecated class PySimpleApp.
app = wx.PySimpleApp()
Report written to report-imucam-rs_cam15hz_imu150hz.pdf

References:

[1] Kalibr 标定双目内外参数以及 IMU 外参数

[2] [相机标定]RealSense D435i相机标定

[3] Problem with single imu and single cam Optimization failed #223

Kalibr installation tutorial的更多相关文章

  1. HP LoadRunner 12.02 Tutorial T7177-88037教程独家中文版

    HP LoadRunner 12.02 Tutorial T7177-88037教程独家中文版 Tylan独家呕血翻译 转载请注明出自“天外归云”的博客园 Welcome to the LoadRun ...

  2. Python 之 MySQL 操作库 lazy_mysql

    TOC Intro Installation Tutorial API Engine Pool Column Table Intro lazy_mysql 是一个非常简单易用,用来操作 MySQL 的 ...

  3. openbr on linuxmint13/ubuntu12.04/debian7 x64 facial recognition [Compile from source!!!]

    Openbr is a great project for facial detecting. System: linuxmint 13 x86_64 Face recognition,  motio ...

  4. linux mint 安装 opencv2.4

    Download opencv https://github.com/opencv/opencv/tree/2.4 安装必要的依赖 sudo apt-get install build-essenti ...

  5. Linux--Introduction and Basic commands(Part one)

    Welcome to Linux world! Introduction and Basic commands--Part one J.C 2018.3.11 Chapter 1 What Is Li ...

  6. LoadRuner12.53教程(三)

    教训1:建立一个Vuser Script jiào教   xùn训   1   :   jiàn建   lì立   yī一   gè个   V   u   s   e   r   S   c   r ...

  7. Spring Boot Reference Guide

    Spring Boot Reference Guide Authors Phillip Webb, Dave Syer, Josh Long, Stéphane Nicoll, Rob Winch,  ...

  8. hbase-indexer官网wiki

    Home Requirements Getting Started Installation Tutorial Demo Indexer Configuration CLI tools Metrics ...

  9. Ubuntu16手动安装OpenStack——glance篇--转

    全文转自https://www.voidking.com/dev-ubuntu16-manual-openstack-glance/ 目标 紧接着<Ubuntu16手动安装OpenStack—— ...

随机推荐

  1. STL源码剖析之组件

    本篇文章开始,进行STL源码剖析的一些知识点,后续系列笔记全是参照<STL源码剖析>进行学习记录的 STL在现在的大部分项目中,实用性已经没有Boost库好了,毕竟STL中仅仅提供了一些容 ...

  2. jquery 报错 Uncaught TypeError: Illegal invocation

    遇到这个错误 请检查你的ajax提交方法的参数 1 参数是否都有定义 2 参数个数是否一致 3参数是否都有值(******)

  3. JSP的原理、JSP的执行过程

    Jsp的本质是servlet, 通过response的printWriter返回,response的getOutputStream只能调用一次,返回流就不能返回页面刷新. JSP起源 在很多动态网页中 ...

  4. nyoj27-水池数目 (求连通块数目)【dfs】

    http://acm.nyist.net/JudgeOnline/problem.php?pid=27 水池数目 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 南阳 ...

  5. 关于使用PL/SQL连接本地oracle时报错:ORA-12514: TNS: 监听程序当前无法识别连接描述符中请求的服务解决

    转自:https://blog.csdn.net/a657281084/article/details/49490069 问题:Oracle主服务和监听器服务已经启动,使用SQL Plus能够正常连接 ...

  6. NodeJS - npm WARN package.json : No repository field:can not open package.json

    最近在研究node.js,在安装npm的时候发现了几个报错,瞬间蒙圈,查找文献基本解决(文献好少呀~  -.-)   一.报错:“can not open  path/path/package.jso ...

  7. 2018年最新 Java面试通关要点汇总集

    基础篇 基本功 面向对象的特征 final, finally, finalize 的区别 int 和 Integer 有什么区别 重载和重写的区别 抽象类和接口有什么区别 说说反射的用途及实现 说说自 ...

  8. csv乱码

    可能:iconv转码导致,本身已经是GBK,又进行了GBK转码

  9. 1.spring.net Look-up Method 查找方法的注入(方法是抽象的需要spring.net注入)

    .为什么需要查找方法的注入 当Object依赖另一个生命周期不同的Object,尤其是当singleton依赖一个non-singleton时,常会遇到不少问题,Lookup Method Injec ...

  10. .NET开源MSSQL、Redis监控产品Opserver之Exception配置

    异常日志的记录和监控主要依赖于StackExchange.Exceptional组件,默认已经被引进来了. 先看下config文件夹下的ExceptionsSettings.json.example文 ...