Python面试题之Python正则表达式指南
1. 正则表达式基础
1.1. 简单介绍
正则表达式并不是Python的一部分。正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大。得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的编程语言实现支持的语法数量不同;但不用担心,不被支持的语法通常是不常用的部分。如果已经在其他语言里使用过正则表达式,只需要简单看一看就可以上手了。
下图展示了使用正则表达式进行匹配的流程: 
正则表达式的大致匹配过程是:依次拿出表达式和文本中的字符比较,如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。如果表达式中有量词或边界,这个过程会稍微有一些不同,但也是很好理解的,看下图中的示例以及自己多使用几次就能明白。
下图列出了Python支持的正则表达式元字符和语法:

1.2. 数量词的贪婪模式与非贪婪模式
正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式"ab*"如果用于查找"abbbc",将找到"abbb"。而如果使用非贪婪的数量词"ab*?",将找到"a"。
1.3. 反斜杠的困扰
与大多数编程语言相同,正则表达式里使用"\"作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符"\",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\\\":前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\\"表示。同样,匹配一个数字的"\\d"可以写成r"\d"。有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。
1.4. 匹配模式
正则表达式提供了一些可用的匹配模式,比如忽略大小写、多行匹配等,这部分内容将在Pattern类的工厂方法re.compile(pattern[, flags])中一起介绍。
2. re模块
2.1. 开始使用re
Python通过re模块提供对正则表达式的支持。使用re的一般步骤是先将正则表达式的字符串形式编译为Pattern实例,然后使用Pattern实例处理文本并获得匹配结果(一个Match实例),最后使用Match实例获得信息,进行其他的操作。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
# encoding: UTF-8import re# 将正则表达式编译成Pattern对象pattern = re.compile(r'hello')# 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回Nonematch = pattern.match('hello world!')if match: # 使用Match获得分组信息 print match.group()### 输出 #### hello |
re.compile(strPattern[, flag]):
这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。 第二个参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。另外,你也可以在regex字符串中指定模式,比如re.compile('pattern', re.I | re.M)与re.compile('(?im)pattern')是等价的。
可选值有:
- re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同)
- M(MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
- S(DOTALL): 点任意匹配模式,改变'.'的行为
- L(LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
- U(UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
- X(VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。以下两个正则表达式是等价的:
|
1
2
3
4
|
a = re.compile(r"""\d + # the integral part \. # the decimal point \d * # some fractional digits""", re.X)b = re.compile(r"\d+\.\d*") |
re提供了众多模块方法用于完成正则表达式的功能。这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,但同时也无法复用编译后的Pattern对象。这些方法将在Pattern类的实例方法部分一起介绍。如上面这个例子可以简写为:
|
1
2
|
m = re.match(r'hello', 'hello world!')print m.group() |
re模块还提供了一个方法escape(string),用于将string中的正则表达式元字符如*/+/?等之前加上转义符再返回,在需要大量匹配元字符时有那么一点用。
2.2. Match
Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。
属性:
- string: 匹配时使用的文本。
- re: 匹配时使用的Pattern对象。
- pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
- endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
- lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
- lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。
方法:
- group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
- groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
- groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。 - start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
- end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。 - span([group]):
返回(start(group), end(group))。 - expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。\id与\g<id>是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g<1>0。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
import rem = re.match(r'(\w+) (\w+)(?P<sign>.*)', 'hello world!')print "m.string:", m.stringprint "m.re:", m.reprint "m.pos:", m.posprint "m.endpos:", m.endposprint "m.lastindex:", m.lastindexprint "m.lastgroup:", m.lastgroupprint "m.group(1,2):", m.group(1, 2)print "m.groups():", m.groups()print "m.groupdict():", m.groupdict()print "m.start(2):", m.start(2)print "m.end(2):", m.end(2)print "m.span(2):", m.span(2)print r"m.expand(r'\2 \1\3'):", m.expand(r'\2 \1\3')### output #### m.string: hello world!# m.re: <_sre.SRE_Pattern object at 0x016E1A38># m.pos: 0# m.endpos: 12# m.lastindex: 3# m.lastgroup: sign# m.group(1,2): ('hello', 'world')# m.groups(): ('hello', 'world', '!')# m.groupdict(): {'sign': '!'}# m.start(2): 6# m.end(2): 11# m.span(2): (6, 11)# m.expand(r'\2 \1\3'): world hello! |
2.3. Pattern
Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。
Pattern不能直接实例化,必须使用re.compile()进行构造。
Pattern提供了几个可读属性用于获取表达式的相关信息:
- pattern: 编译时用的表达式字符串。
- flags: 编译时用的匹配模式。数字形式。
- groups: 表达式中分组的数量。
- groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
import rep = re.compile(r'(\w+) (\w+)(?P<sign>.*)', re.DOTALL)print "p.pattern:", p.patternprint "p.flags:", p.flagsprint "p.groups:", p.groupsprint "p.groupindex:", p.groupindex### output #### p.pattern: (\w+) (\w+)(?P<sign>.*)# p.flags: 16# p.groups: 3# p.groupindex: {'sign': 3} |
实例方法[ | re模块方法]:
- match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]):
这个方法将从string的pos下标处起尝试匹配pattern;如果pattern结束时仍可匹配,则返回一个Match对象;如果匹配过程中pattern无法匹配,或者匹配未结束就已到达endpos,则返回None。pos和endpos的默认值分别为0和len(string);re.match()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
注意:这个方法并不是完全匹配。当pattern结束时若string还有剩余字符,仍然视为成功。想要完全匹配,可以在表达式末尾加上边界匹配符'$'。
示例参见2.1小节。
- search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]):
这个方法用于查找字符串中可以匹配成功的子串。从string的pos下标处起尝试匹配pattern,如果pattern结束时仍可匹配,则返回一个Match对象;若无法匹配,则将pos加1后重新尝试匹配;直到pos=endpos时仍无法匹配则返回None。pos和endpos的默认值分别为0和len(string));re.search()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
12345678910111213141516# encoding: UTF-8importre# 将正则表达式编译成Pattern对象pattern=re.compile(r'world')# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None# 这个例子中使用match()无法成功匹配match=pattern.search('hello world!')ifmatch:# 使用Match获得分组信息printmatch.group()### 输出 #### world - split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]):
按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。1234567importrep=re.compile(r'\d+')printp.split('one1two2three3four4')### output #### ['one', 'two', 'three', 'four', ''] - findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]):
搜索string,以列表形式返回全部能匹配的子串。1234567importrep=re.compile(r'\d+')printp.findall('one1two2three3four4')### output #### ['1', '2', '3', '4'] - finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]):
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。12345678importrep=re.compile(r'\d+')forminp.finditer('one1two2three3four4'):printm.group(),### output #### 1 2 3 4 - sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]):
使用repl替换string中每一个匹配的子串后返回替换后的字符串。当repl是一个字符串时,可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。
123456789101112131415importrep=re.compile(r'(\w+) (\w+)')s='i say, hello world!'printp.sub(r'\2 \1', s)deffunc(m):returnm.group(1).title()+' '+m.group(2).title()printp.sub(func, s)### output #### say i, world hello!# I Say, Hello World! - subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):
返回 (sub(repl, string[, count]), 替换次数)。123456789101112131415importrep=re.compile(r'(\w+) (\w+)')s='i say, hello world!'printp.subn(r'\2 \1', s)deffunc(m):returnm.group(1).title()+' '+m.group(2).title()printp.subn(func, s)### output #### ('say i, world hello!', 2)# ('I Say, Hello World!', 2)
以上就是Python对于正则表达式的支持。熟练掌握正则表达式是每一个程序员必须具备的技能,这年头没有不与字符串打交道的程序了。笔者也处于初级阶段,与君共勉,^_^
另外,图中的特殊构造部分没有举出例子,用到这些的正则表达式是具有一定难度的。有兴趣可以思考一下,如何匹配不是以abc开头的单词,^_^
参考
Python面试题之Python正则表达式指南的更多相关文章
- 千万不要错过这几道Python面试题,Python面试题No16
第1题: python下多线程的限制以及多进程中传递参数的方式? python多线程有个全局解释器锁(global interpreter lock),简称GIL,这个GIL并不是python的特性, ...
- Python面试题之Python面试题汇总
在这篇文章中: Python基础篇 1:为什么学习Python 2:通过什么途径学习Python 3:谈谈对Python和其他语言的区别 Python的优势: 4:简述解释型和编译型编程语言 5:Py ...
- python面试题之Python支持什么数据类型?
所属网站分类: 面试经典 > python 作者:外星人入侵 链接:http://www.pythonheidong.com/blog/article/67/ 来源:python黑洞网,专注py ...
- Python面试题之Python正则表达式re模块
一.Python正则表达式re模块简介 正则表达式,是一门相对通用的语言.简单说就是:用一系列的规则语法,去匹配,查找,替换等操作字符串,以达到对应的目的:此套规则,就是所谓的正则表达式.各个语言都有 ...
- python面试题三:Python 网络编程与并发
1 简述 OSI 七层协议. OSI七层协议模型主要是: 应用层(Application):为用户的应用程序(例如电子邮件.文件传输和终端仿真)提供网络服务. 表示层(Presentation):使用 ...
- Python面试题之python是一种什么语言及优缺点
1.说说python是一种什么语言? 参考答案:python是一门动态解释性的强类型定义语言 编译型vs解释型 编译型优点:编译器一般会有预编译的过程对代码进行优化.因为编译只做一次,运行时不需要编译 ...
- python面试题之Python是如何进行内存管理的
python内部使用引用计数,来保持追踪内存中的对象,Python内部记录了对象有多少个引用,即引用计数,当对象被创建时就创建了一个引用计数,当对象不再需要时,这个对象的引用计数为0时,它被垃圾回收. ...
- python面试题之python下多线程的限制
python多线程有个全局解释器锁(global interpreter lock). 这个锁的意思是任一时间只能有一个线程使用解释器,跟单cpu跑多个程序一个意思,大家都是轮着用的,这叫“并发”,不 ...
- Python面试题之Python中的类和实例
0x00 前言 类,在学习面向对象我们可以把类当成一种规范,这个思想就我个人的体会,感觉很重要,除了封装的功能外,类作为一种规范,我们自己可以定制的规范,从这个角度来看,在以后我们学习设计模式的时候, ...
随机推荐
- ORB特征提取与匹配
ORB特征是目前最优秀的特征提取与匹配算法之一,下面具体讲解一下: 特征点的检测 图像的特征点可以简单的理解为图像中比较显著显著的点,如轮廓点,较暗区域中的亮点,较亮区域中的暗点等.ORB采用FAST ...
- Node.js模块 require和 exports
https://liuzhichao.com/p/1669.html http://www.cnblogs.com/pigtail/archive/2013/01/14/2859555.html
- php面试题笔试题 比较有用
一.选择题1.php的源代码是 (A )A.开放的 B.封闭的 C.需购买的 D.完全不可见的2.php的输出语句是 ( C )A.out.print B.response.write C.echo ...
- 清空select下拉框的方法
$("#search").find("option").remove(); //或者 $("#search").empty();
- 55、Android网络图片 加载缓存处理库的使用
先来一个普通的加载图片的方法. import android.annotation.SuppressLint; import android.app.Activity; import and ...
- boost::interprocess(2)
//doc_anonymous_mutex_shared_data.hpp #include <boost/interprocess/sync/interprocess_mutex.hpp> ...
- ios中沙盒
打开模拟器沙盒目录 下面看看模拟器的沙盒文件夹在mac电脑上的什么位置. 文件都在个人用户名文件夹下的一个隐藏文件夹里,中文叫资源库,他的目录其实是Library. 2.1 方法1.可以设置显示隐藏文 ...
- Entity Framework查询生成大量的子查询,如何避免?求救
最近使用Entity Framework做一个中型的项目,一张表含有千万条数据,并没有使用很复杂的查询,只是程序上使用了DTO进行帅选数据,且使用了分页,效果很不理想.经过跟踪sql,我发现很多简单的 ...
- 什么是Python?Python的设计哲学?如何获取/升级Python?
Python? Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/) Python的创始人为吉多·范罗苏姆(Guido van Rossum). 1989年的圣诞节期间,吉多· ...
- About Outlook Rule Quota
在Exchange中默认有设置outlook的规则的大小,如果client在outlook上设定的规则超过大小会导致功能无法使用 Outlook的郵件規則,在Exchange 2000/2003時,郵 ...