BZOJ3209(luogu 4317)花神的数论题题解
题目
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积(n<=1e15)。
分析
好吧,一看数据范围及可知暴力不可做我是不会说我打了一次暴力得了50分的,看一下让求的,恶心,仔细观察后觉得是一道数位DP,可先将n换做二进制,在每一位每一位的分析,若为0则跳过,若为1则处理一番,在处理时可先脚动模拟一番,发现和杨辉三角略有联系,故先处理处杨辉三角,最终出答案(代码里都有体现),时间是:luogu 0ms,bzoj 48ms 从中体现出了bzoj评测机运算速度较慢。
上代码
#include<bits/stdc++.h>
using namespace std;
long long al[],bl[],f[][],x[],y[],m=,a,b,k=,n,mod=,ans=,qaq[][];
long long power(long long a,long long b){ //快速幂
if(b==)
return ;
if(b==)
return a;
return b%==?power(a*a%mod,b/)%mod:a*power(a*a%mod,b/)%mod;
}
int main(){
memset(al,,sizeof(al));
memset(f,,sizeof(f));
memset(bl,,sizeof(bl));
memset(x,,sizeof(x));
memset(y,,sizeof(y));
memset(qaq,,sizeof(qaq));
for(int i=;i<=;i++)
f[i][]=f[i][i]=;
for(int i=;i<=;i++)
for(int j=;j<i;j++)
f[i][j]=f[i-][j-]+f[i-][j];
for(int i=;i<=;i++)
for(int j=;j<=i;j++)
qaq[i][j]=qaq[i-][j]+f[i][j];
for(int i=;i<=;i++)
qaq[i][]++;
scanf("%lld",&b);
qaq[][]=;
if(b%==)
al[]=;
while(b>){
b/=;
k++;
if(b%==)
al[k]=;
}
for(int i=k;i>;i--)
if(al[i]){
long long anss=;
for(int j=;j<=i;j++){
anss=anss*power(j+m,qaq[i-][j])%mod;
}
ans=ans*anss%mod;
m++;
}
printf("%lld\n",ans);
return ;
}
BZOJ3209(luogu 4317)花神的数论题题解的更多相关文章
- Luogu 4317 花神的数论题
披着数论题外衣的数位dp. 相当于数一数$[1,n]$范围内$1$的个数是$1,2,3,4,...log(n)$的数各有多少个,直接在二进制下数位dp. 然而我比较sb地把(1e7 + 7)当成了质数 ...
- bzoj3209:3209: 花神的数论题
觉得还是数位dp的那种解题形式但是没有认真的想,一下子就看题解.其实还是设置状态转移.一定要多思考啊f[i][j]=f[i-1][j]+g[i-1][j] g[i][j]=f[i-1][j-1]+g[ ...
- Luogu P4317 花神的数论题
也是一道不错的数位DP,考虑先转成二进制后再做 转化一下问题,考虑统计出\([1,n]\)中在二进制下有\(i\)个\(1\)的方案数\(cnt_i\),那么答案显然就是\(\prod i^{cnt_ ...
- 洛谷$ P$4317 花神的数论题 数位$dp$
正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*
BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...
- 【bzoj3209】: 花神的数论题 数论-DP
[bzoj3209]: 花神的数论题 首先二进制数中1的个数最多就是64个 设所有<=n的数里二进制中1的个数为i的有a[i]个 那么答案就是 然后快速幂 求a[i]可以用DP 设在二进制中从 ...
- [Bzoj3209]花神的数论题(数位dp)
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2633 Solved: 1182[Submit][Status][Disc ...
- [bzoj3209]花神的数论题_数位dp
花神的数论题 bzoj-3209 题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$ 注释:$1\le n\le 10^{15}$. 想法 ...
随机推荐
- ps cs6破解补丁使用方法
第一步.首先下载ps cs6破解补丁 ,再下载官方ps cs6中文版,安装之后运行一次.第二步.先备份你想要激活的软件的“amtlib”文件,比如PS CS6 64bit其目录在“C:\Program ...
- SAP C/4HANA Sales Cloud使用OData服务和第三方系统集成的一个具体例子
出于工作需要,Jerry写了这篇文章,给某些Partner做参考. 以前Jerry曾经介绍过SAP C/4HANA的五朵云到底包含哪些具体产品,其实在SAP官网上有更权威的中文解释: https:// ...
- UID卡修改&UID锁死修复
好久没发RFID类文章,最近有小伙伴问到UID卡的问题,在这里就写一写吧. 首先是UID修改的问题,只要卡是UID卡,就都可以修改UID,首先读卡器连接电脑,卡片放到读卡器上. 然后我们要用一个工具, ...
- Types of Computer Systems
Types of Computer Systems Para 1 You should be familiar with the differences among computer systems ...
- C#图解教程读书笔记(第4章 类:基础)
类成员包括数据成员和函数成员. 和C/C++不同,C#在类型的外部不能声明全局变量,所有的字段都属于类型,而且必须在类型声明内部声明. 和C/C++不同,方法没有返回默认类型,所有方法必须包含返回类型 ...
- (转)从信息隐藏的一个需求看C++接口与实现的分离
原文地址https://blog.csdn.net/tonywearme/article/details/6926649 让我们从stackoverflow上一个同学的问题来开始.问题的原型是这样的( ...
- BZOJ4530:[BJOI2014]大融合(LCT)
Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...
- leetcode 78. Subsets 、90. Subsets II
第一题是输入数组的数值不相同,第二题是输入数组的数值有相同的值,第二题在第一题的基础上需要过滤掉那些相同的数值. level代表的是需要进行选择的数值的位置. 78. Subsets 错误解法: cl ...
- ASP.NET Core MVC如何上传文件及处理大文件上传
用文件模型绑定接口:IFormFile (小文件上传) 当你使用IFormFile接口来上传文件的时候,一定要注意,IFormFile会将一个Http请求中的所有文件都读取到服务器内存后,才会触发AS ...
- Winodws SNMP服务安装和配置(Windows 2003 & 2008 R2)
简单网络管理协议SNMP服务起着代理的作用,它会收集可以向SNMP管理站或控制台报告的信息.您可以使用SNMP服务来收集数据,并且在整个公司网络范围内管理基于Windows Server 2003.M ...