BZOJ3209(luogu 4317)花神的数论题题解
题目
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积(n<=1e15)。
分析
好吧,一看数据范围及可知暴力不可做我是不会说我打了一次暴力得了50分的,看一下让求的,恶心,仔细观察后觉得是一道数位DP,可先将n换做二进制,在每一位每一位的分析,若为0则跳过,若为1则处理一番,在处理时可先脚动模拟一番,发现和杨辉三角略有联系,故先处理处杨辉三角,最终出答案(代码里都有体现),时间是:luogu 0ms,bzoj 48ms 从中体现出了bzoj评测机运算速度较慢。
上代码
#include<bits/stdc++.h>
using namespace std;
long long al[],bl[],f[][],x[],y[],m=,a,b,k=,n,mod=,ans=,qaq[][];
long long power(long long a,long long b){ //快速幂
if(b==)
return ;
if(b==)
return a;
return b%==?power(a*a%mod,b/)%mod:a*power(a*a%mod,b/)%mod;
}
int main(){
memset(al,,sizeof(al));
memset(f,,sizeof(f));
memset(bl,,sizeof(bl));
memset(x,,sizeof(x));
memset(y,,sizeof(y));
memset(qaq,,sizeof(qaq));
for(int i=;i<=;i++)
f[i][]=f[i][i]=;
for(int i=;i<=;i++)
for(int j=;j<i;j++)
f[i][j]=f[i-][j-]+f[i-][j];
for(int i=;i<=;i++)
for(int j=;j<=i;j++)
qaq[i][j]=qaq[i-][j]+f[i][j];
for(int i=;i<=;i++)
qaq[i][]++;
scanf("%lld",&b);
qaq[][]=;
if(b%==)
al[]=;
while(b>){
b/=;
k++;
if(b%==)
al[k]=;
}
for(int i=k;i>;i--)
if(al[i]){
long long anss=;
for(int j=;j<=i;j++){
anss=anss*power(j+m,qaq[i-][j])%mod;
}
ans=ans*anss%mod;
m++;
}
printf("%lld\n",ans);
return ;
}
BZOJ3209(luogu 4317)花神的数论题题解的更多相关文章
- Luogu 4317 花神的数论题
披着数论题外衣的数位dp. 相当于数一数$[1,n]$范围内$1$的个数是$1,2,3,4,...log(n)$的数各有多少个,直接在二进制下数位dp. 然而我比较sb地把(1e7 + 7)当成了质数 ...
- bzoj3209:3209: 花神的数论题
觉得还是数位dp的那种解题形式但是没有认真的想,一下子就看题解.其实还是设置状态转移.一定要多思考啊f[i][j]=f[i-1][j]+g[i-1][j] g[i][j]=f[i-1][j-1]+g[ ...
- Luogu P4317 花神的数论题
也是一道不错的数位DP,考虑先转成二进制后再做 转化一下问题,考虑统计出\([1,n]\)中在二进制下有\(i\)个\(1\)的方案数\(cnt_i\),那么答案显然就是\(\prod i^{cnt_ ...
- 洛谷$ P$4317 花神的数论题 数位$dp$
正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*
BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...
- 【bzoj3209】: 花神的数论题 数论-DP
[bzoj3209]: 花神的数论题 首先二进制数中1的个数最多就是64个 设所有<=n的数里二进制中1的个数为i的有a[i]个 那么答案就是 然后快速幂 求a[i]可以用DP 设在二进制中从 ...
- [Bzoj3209]花神的数论题(数位dp)
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2633 Solved: 1182[Submit][Status][Disc ...
- [bzoj3209]花神的数论题_数位dp
花神的数论题 bzoj-3209 题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$ 注释:$1\le n\le 10^{15}$. 想法 ...
随机推荐
- 什么是SAP GUI的client
我们用SAPGUI登录某个系统时,除了用户名和密码外,还要指定一个必填字段client: 这个client是什么东东? 看文档: SAP Client is the highest hierarchi ...
- Mac 导入maven项目详解
1.打开Eclipse,选择Help->Install New SoftWare2.点击add 地址输入:http://m2eclipse.sonatype.org/sites/m2e,name ...
- StringUtils工具类介绍
1 abbreviate方法缩写一段文字 StringUtils.abbreviate("abcdefghijklmno", -1, 10) = "abcdefg...& ...
- php-------面向对象详解
php面向对象详解 面向对象 对象概念是面向对象技术的核心.在显示世界里我们所面对的事情都是对象,如计算机.电视机.自行车等.在面向对象的程序设计中,对象是一个由信息及对信息进行处理的描述所组成的整体 ...
- ThinkPHP中前台输出变量
1. foreach <foreach name="list" item="vo" > {$key}|{$vo.id}:{$vo.name} & ...
- Junit单元测试多线程的问题
今天下午很快完成了一个接口的监控功能,然后屁颠屁颠地用Junit开始单元测试.然后我就开始陷入崩溃的边缘... 监控结束后需要将监控结果以邮件的形式发送给运营的小伙伴维护,前面测试还是很顺利,到了开多 ...
- 理解基本包装类型Number,String,Boolean
在前面我们知道了引用类型是什么了,也就能理解包装类型了.包装对象其实也是一种引用类型,之所以要单独提出来只不过是因为它们可以把原始类型的值变成(包装成)对象,这样它们也就获得了各自类型相应的特殊行为了 ...
- C# 面向对象之多态
//多态:让一个对象表现的多种状态 //实现:子类重写父类的虚方法 Person person = new Person(); Chinese chinese = new Chinese(); Ame ...
- PAT——1009. 说反话
给定一句英语,要求你编写程序,将句中所有单词的顺序颠倒输出. 输入格式:测试输入包含一个测试用例,在一行内给出总长度不超过80的字符串.字符串由若干单词和若干空格组成,其中单词是由英文字母(大小写有区 ...
- VB.NET的一个邮件发送函数
''' <summary> ''' VB.NET邮件发送程序 ''' 还没用在别的服务器,不晓得能不能行,慎用! ''' </summary> ''' <param na ...