【bzoj1304】[CQOI2009]叶子的染色 树形dp
题目描述
给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根、内部结点和叶子均可)着以黑色或白色。你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点(哪怕是这个叶子本身)。 对于每个叶结点u,定义c[u]为从根结点从U的简单路径上最后一个有色结点的颜色。给出每个c[u]的值,设计着色方案,使得着色结点的个数尽量少。
输入
第一行包含两个正整数m, n,其中n是叶子的个数,m是结点总数。结点编号为1,2,…,m,其中编号1,2,… ,n是叶子。以下n行每行一个0或1的整数(0表示黑色,1表示白色),依次为c[1],c[2],…,c[n]。以下m-1行每行两个整数a,b(1<=a < b <= m),表示结点a和b 有边相连。
输出
仅一个数,即着色结点数的最小值。
样例输入
5 3
0
1
0
1 4
2 5
4 5
3 5
样例输出
2
题解
树形dp
考虑如果给定根节点的话怎么做:
设 $f[i][j]$ 表示以 $i$ 为根的子树,$i$ 到根节点的简单路径上最后一个有色节点的颜色是 $j$ 的最小着色点数。
那么对于所有 $i$ 的儿子 $k$ ,有 $f[i][j]+=min(f[k][j],f[k][j\text{^}1])$ 。边界条件 $f[u][c[u]]=0,f[u][c[u]\text{^}1]=\infty$ ,其中 $u$ 是叶子节点。
那么 $min(f[root][0],f[root][1])+1$ 就是 $root$ 作为树根时的答案,其中 $+1$ 指的是根节点需要再着色一次。
一次dp的时间复杂度是 $O(n)$ ,我们可以枚举每个节点为根,复杂度为 $O(n^2)$ ,可过。
但是还有更优的做法:考虑根节点从 $x$ 变化到相邻的点 $y$ 的过程,那么 $x$ 为根时,$y$ 的着色只有两种情况:染了与 $x$ 不同的颜色、没有染色。
第一种情况显然换根后方案可以不变,第二种情况显然可以换根时把 $x$ 的着色该为染 $y$ ,答案不变。因此有 $ans_y\le ans_x$,同时从 $y$ 换到 $x$ 时有 $ans_x\le ans_y$ ,所以 $ans_x=ans_y$。
于是选择任意一个非叶节点作为根做一次dp即可,时间复杂度 $O(n)$
#include <cstdio>
#include <algorithm>
#define N 10010
using namespace std;
int head[N] , to[N << 1] , next[N << 1] , cnt , f[N][2];
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x , int fa)
{
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa)
dfs(to[i] , x) , f[x][0] += min(f[to[i]][0] , f[to[i]][1] + 1) , f[x][1] += min(f[to[i]][1] , f[to[i]][0] + 1);
}
int main()
{
int n , m , i , x , y;
scanf("%d%d" , &m , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &x) , f[i][x] = 0 , f[i][x ^ 1] = m;
for(i = 1 ; i < m ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
dfs(m , 0);
printf("%d\n" , min(f[m][0] , f[m][1]) + 1);
return 0;
}
【bzoj1304】[CQOI2009]叶子的染色 树形dp的更多相关文章
- BZOJ1304: [CQOI2009]叶子的染色 树形dp
Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含 ...
- BZOJ 1304: [CQOI2009]叶子的染色 树形DP + 结论
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...
- BZOJ1304 CQOI2009 叶子的染色 【树形DP】
BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...
- 【树形dp】bzoj1304: [CQOI2009]叶子的染色
又是一道优美的dp Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的 ...
- BZOJ1304: [CQOI2009]叶子的染色
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1304 树形dp. 可以发现其实根选在哪里都是没有问题的. f[u][0],f[u][1],f[ ...
- BZOJ1304 CQOI2009叶子的染色(树形dp)
令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足.存在黑色叶节点未被满足.存在白色叶节点未被满足,考虑i节点涂色情况即可转移.事实上贪心也可以. #include&l ...
- BZOJ_1304_[CQOI2009]叶子的染色_树形DP
BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...
- 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)
[BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...
- BZOJ 1304: [CQOI2009]叶子的染色
1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 566 Solved: 358[Submit][Statu ...
随机推荐
- mongoengine中queryset触发网络访问机制剖析
背景 最近新上线的一个服务,偶尔会有超时告警,其主要逻辑仅仅只是简单的读/写mongodb,而且服务上线初期,流量并不大,因而理论上来说,每次请求都应该很快才对,事实上分析日志也证实90%以上的请求都 ...
- BZOJ1001_狼抓兔子_KEY
题目传送门 由题意得是最小割问题,又由最大流最小割定理可得只需要求无向图的最大流即可. 建双向边,跑Dinic,EK会超时. 注意在DFS时要加"if(!res)dist[now]=0;&q ...
- beego 点滴
在使用beego时遇到 need a primary key field 1 确保结构中的 字段首字母大写 2 beego默认主键是id 如果主键定义的是其他字段比如userid 那么加上orm pk ...
- 【转】Oracle 如何找回已经删除了的表记录
有的时候我们不小心把数据库表(emp)中重要的记录给删除了,怎么给找回来了,看下面这个例子你就会明白. 某一天,10点钟的时候,张三一不小心给数据库表emp的一条重要记录给删除了并且还提交了,此时也没 ...
- C#监听锁屏代码
今天,偶然间在技术群看有人问,怎么监听锁屏. 在此处记录一下 public class Constrctor { public Constrctor() { SystemEvents.SessionS ...
- hdu2037今年暑假不AC(贪心,活动安排问题)
今年暑假不AC Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) Total Submi ...
- linux基础——文件挂载,lamp安装
一. 文件挂载 lsblk -f 显示文件系统信息 mount -t vfat UUID="ffffffffff" /mnt 挂载到/mnt目录 Linux针对于各式U盘挂载方 ...
- Python简要标准库(1)
sys sys这个模块让你能够访问与Python解释器联系紧密的变量和函数 其中的一些在下表 F argv 命令行参数,包括脚本名称 exit([arg]) 退出当前的程序,可选参数为给定的返回值或者 ...
- 服务器返回中文乱码的情况(UTF8编码 -> 转化为 SYSTEM_LOCALE 编码)
服务器乱码 转换使用如下方法 入惨{“msg”} -> utf8编码 -> 转化为 SYSTEM_LOCALE 编码 -> 接受转换后的参数 "sEncoding" ...
- Flex 布局浅析
除了 CSS 中传统的布局系统之外,CSS3还提供了一个新布局系统.在这个新的框模型中,框的子代采用水平或垂直布局,而且可将未使用的空间分配给特定的子代,或者通过“弹性”分配给应展开的子代,在各子代间 ...