题目描述

给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根、内部结点和叶子均可)着以黑色或白色。你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点(哪怕是这个叶子本身)。 对于每个叶结点u,定义c[u]为从根结点从U的简单路径上最后一个有色结点的颜色。给出每个c[u]的值,设计着色方案,使得着色结点的个数尽量少。

输入

第一行包含两个正整数m, n,其中n是叶子的个数,m是结点总数。结点编号为1,2,…,m,其中编号1,2,… ,n是叶子。以下n行每行一个0或1的整数(0表示黑色,1表示白色),依次为c[1],c[2],…,c[n]。以下m-1行每行两个整数a,b(1<=a < b <= m),表示结点a和b 有边相连。

输出

仅一个数,即着色结点数的最小值。

样例输入

5 3
0
1
0
1 4
2 5
4 5
3 5

样例输出

2


题解

树形dp

考虑如果给定根节点的话怎么做:

设 $f[i][j]$ 表示以 $i$ 为根的子树,$i$ 到根节点的简单路径上最后一个有色节点的颜色是 $j$ 的最小着色点数。

那么对于所有 $i$ 的儿子 $k$ ,有 $f[i][j]+=min(f[k][j],f[k][j\text{^}1])$ 。边界条件 $f[u][c[u]]=0,f[u][c[u]\text{^}1]=\infty$ ,其中 $u$ 是叶子节点。

那么 $min(f[root][0],f[root][1])+1$ 就是 $root$ 作为树根时的答案,其中 $+1$ 指的是根节点需要再着色一次。

一次dp的时间复杂度是 $O(n)$ ,我们可以枚举每个节点为根,复杂度为 $O(n^2)$ ,可过。

但是还有更优的做法:考虑根节点从 $x$ 变化到相邻的点 $y$ 的过程,那么 $x$ 为根时,$y$ 的着色只有两种情况:染了与 $x$ 不同的颜色、没有染色。

第一种情况显然换根后方案可以不变,第二种情况显然可以换根时把 $x$ 的着色该为染 $y$ ,答案不变。因此有 $ans_y\le ans_x$,同时从 $y$ 换到 $x$ 时有 $ans_x\le ans_y$ ,所以 $ans_x=ans_y$。

于是选择任意一个非叶节点作为根做一次dp即可,时间复杂度 $O(n)$

#include <cstdio>
#include <algorithm>
#define N 10010
using namespace std;
int head[N] , to[N << 1] , next[N << 1] , cnt , f[N][2];
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x , int fa)
{
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa)
dfs(to[i] , x) , f[x][0] += min(f[to[i]][0] , f[to[i]][1] + 1) , f[x][1] += min(f[to[i]][1] , f[to[i]][0] + 1);
}
int main()
{
int n , m , i , x , y;
scanf("%d%d" , &m , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &x) , f[i][x] = 0 , f[i][x ^ 1] = m;
for(i = 1 ; i < m ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
dfs(m , 0);
printf("%d\n" , min(f[m][0] , f[m][1]) + 1);
return 0;
}

【bzoj1304】[CQOI2009]叶子的染色 树形dp的更多相关文章

  1. BZOJ1304: [CQOI2009]叶子的染色 树形dp

    Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含 ...

  2. BZOJ 1304: [CQOI2009]叶子的染色 树形DP + 结论

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  3. BZOJ1304 CQOI2009 叶子的染色 【树形DP】

    BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...

  4. 【树形dp】bzoj1304: [CQOI2009]叶子的染色

    又是一道优美的dp Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的 ...

  5. BZOJ1304: [CQOI2009]叶子的染色

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1304 树形dp. 可以发现其实根选在哪里都是没有问题的. f[u][0],f[u][1],f[ ...

  6. BZOJ1304 CQOI2009叶子的染色(树形dp)

    令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足.存在黑色叶节点未被满足.存在白色叶节点未被满足,考虑i节点涂色情况即可转移.事实上贪心也可以. #include&l ...

  7. BZOJ_1304_[CQOI2009]叶子的染色_树形DP

    BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...

  8. 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)

    [BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...

  9. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

随机推荐

  1. 关于java的wait、notify、notifyAll方法

    wait.notify.notifyAll 遇到的问题 之前开发打印机项目,因为需要使用多线程技术,当时并不怎么理解,一开始随意在方法体内使用wait.notify.notifyAll 方法导致出现了 ...

  2. 必读的 Android 文章

    必读的 Android 文章 掘金官方 关注 2017.06.07 13:58* 字数 25218 阅读 8782评论 2喜欢 218 写给 Android 开发者的混淆使用手册 - Android ...

  3. generator-ivweb 基于react-redux的多页脚手架

    背景 每个公司甚至每个项目组,在开发新项目的时候都会有一些自己特色的东西,比如公共组件,ajax请求拦截处理,内部积累的一些业务逻辑等等,如果没有自己的脚手架,那么拷贝代码成为常态,每个项目的结构,甚 ...

  4. 跟浩哥学自动化测试Selenium -- 浏览器的基本操作与元素定位(3)

    浏览器的基本操作与元素定位 通过上一章学习,我们已经学会了如何设置驱动路径,如何创建浏览器对象,如何打开一个网站,接下来我们要进行一些复杂的操作比如先打开百度首页,在打开博客园,网页后退,前进等等,甚 ...

  5. 第六模块:WEB框架开发 第1章·Django框架开发50~87

    51-表关系之一对多 52-表关系之多对多 53-表关系之一对一 54-数据库表关系之关联字段与外键约束 55-数据库表关系之sql创建关联表 56-ORM生成关联表模型 57-多表操作之一对多添加记 ...

  6. lr 常用操作

    lr脚本编写语法: web_add_cookie();:服务器注入cookies lr_save_string("网址或其他","参数2");:一个保存函数,它 ...

  7. docker学习2

    今天继续学习docker! 搜索镜像 docker search centos 下载镜像 docker pull name(镜像名字) 查看镜像docker images 字段含义分析: TAG:仓库 ...

  8. Java学习笔记-11.运行期间类型鉴定

    1.Class对象的getClasses()方法获取的是该类中所有的公共的内部类,以及从父类,父接口继承来的内部类.getinterfaces()方法返回类继承的所有接口. import javax. ...

  9. KVM嵌套虚拟化

    1. 检查环境 $ grep -E 'svm|vmx' /proc/cpuinfo ~]#  lsmod | grep kvm kvm_intel             170181  0 kvm  ...

  10. 第一个线性回归程序(基于Jupyter)

    import pandas as pdimport seaborn as snssns.set(context="notebook", style="whitegrid& ...