【BZOJ5301】【CQOI2018】异或序列(莫队)
【BZOJ5301】【CQOI2018】异或序列(莫队)
题面
Description
已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l、r ,问在 [l,r] 区间内,有多少连续子
序列满足异或和等于 k 。
也就是说,对于所有的 x,y (l≤x≤y≤r),能够满足a[x]a[x+1]…^a[y]=k的x,y有多少组。
Input
输入文件第一行,为3个整数n,m,k。
第二行为空格分开的n个整数,即ai,a2,….an。
接下来m行,每行两个整数lj,rj,表示一次查询。
1≤n,m≤105,O≤k,ai≤105,1≤lj≤rj≤n
Output
输出文件共m行,对应每个查询的计算结果。
Sample Input
4 5 1
1 2 3 1
1 4
1 3
2 3
2 4
4 4
Sample Output
4
2
1
2
1
题解
板子题+原题
我也没有什么好说的了。
果然是模板大赛啊。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 111111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll ans[MAX],Ans;
int n,m,K,blk,num[MAX],a[MAX];
struct Query{int l,r,id,lb;}q[MAX];
bool operator<(Query a,Query b){if(a.lb!=b.lb)return a.lb<b.lb;return a.r<b.r;}
void Add(int x){Ans+=num[K^a[x]],++num[a[x]];}
void Del(int x){--num[a[x]],Ans-=num[K^a[x]];}
int main()
{
n=read();m=read();K=read();blk=sqrt(n);
for(int i=1;i<=n;++i)a[i]=read()^a[i-1];
for(int i=1;i<=m;++i)
{
int l=read(),r=read();
q[i]=(Query){l-1,r,i,l/blk};
}
sort(&q[1],&q[m+1]);
int L=0,R=-1;
for(int i=1;i<=m;++i)
{
while(R<q[i].r)Add(++R);
while(L>q[i].l)Add(--L);
while(L<q[i].l)Del(L++);
while(R>q[i].r)Del(R--);
ans[q[i].id]=Ans;
}
for(int i=1;i<=m;++i)printf("%lld\n",ans[i]);
return 0;
}
【BZOJ5301】【CQOI2018】异或序列(莫队)的更多相关文章
- BZOJ5301:[CQOI2018]异或序列(莫队)
Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...
- bzoj 5301 [Cqoi2018]异或序列 莫队
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 204 Solved: 155[Submit][Status ...
- bzoj 5301: [Cqoi2018]异或序列 (莫队算法)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...
- 洛谷P4462 [CQOI2018]异或序列(莫队)
题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...
- [CQOI2018]异或序列 (莫队,异或前缀和)
题目链接 Solution 有点巧的莫队. 考虑到区间 \([L,R]\) 的异或和也即 \(sum[L-1]~\bigoplus~sum[R]\) ,此处\(sum\)即为异或前缀和. 然后如何考虑 ...
- P4462 [CQOI2018]异或序列 莫队
题意:给定数列 \(a\) 和 \(k\) ,询问区间 \([l,r]\) 中有多少子区间满足异或和为 \(k\). 莫队.我们可以记录前缀异或值 \(a_i\),修改时,贡献为 \(c[a_i\bi ...
- CQOI2018异或序列 [莫队]
莫队板子 用于复习 #include <cstdio> #include <cstdlib> #include <algorithm> #include <c ...
- luogu P4462 [CQOI2018]异或序列 |莫队
题目描述 已知一个长度为n的整数数列a1,a2,...,an,给定查询参数l.r,问在al,al+1,...,ar区间内,有多少子序列满足异或和等于k.也就是说,对于所有的x,y (I ≤ x ≤ ...
- BZOJ5301: [Cqoi2018]异或序列(莫队)
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 400 Solved: 291[Submit][Status ...
- [bzoj5301][Cqoi2018]异或序列_莫队
异或序列 bzoj-5301 Cqoi-2018 题目大意:题目链接. 注释:略. 想法: 由于a^a=0这个性质,我们将所有的数变成异或前缀和. 所求就变成了求所有的$l_i\le x<y\l ...
随机推荐
- Nginx+Tomcat多站点访问默认主页问题-狒狒完美解决-Q9715234
<Engine name="Catalina" defaultHost="www.abc.com"> <Host name="www ...
- java 多维数组转化为字符串
int[][] a = {{1,2,3},{4,5,7}}; System.out.println(Arrays.deepToString(a)); Arrays.deepToString()此方法是 ...
- CentOS安装nmon
nmon官网: http://nmon.sourceforge.net/pmwiki.php?n=Main.HomePage 下载nmon16e_mpginc.tar.gz到本地并上传到服务器 tar ...
- Selenium(Python)等待元素出现
1.显式等待 from selenium import webdriverfrom selenium.webdriver.common.by import Byfrom selenium.webdri ...
- Windows如何设置动态和静态ip地址
打开控制面板,一般在电脑的菜单栏能找到,win8和win10可以使用快捷键(win键+X键),找不到的朋友可以搜索一下. 进入到网络和共享中心,点击更改适配器设置. 这里显示的是电脑所以的网络 ...
- Linux命令应用大词典-第32章 性能监控
32.1 sar:收集.报告或保存系统活动信息 32.2 iostat:报告CPU统计数据和设备.分区输入.输出消息 32.3 iotop:进行I/O监控 32.4 mpstat:报告CPU相关的统计 ...
- BehaviorDesigner学习
行为树: 行为树设计师插件是一个专门为unity设计的AI插件. 学习用!!!插件地址:链接:http://pan.baidu.com/s/1dF2okPN 密码:b43m 通过继承Behavior中 ...
- 前端开发工程师 - 06.Mini项目实战 - 项目简介
第6章--Mini项目实战 项目简介 Mini项目简介-Ego社区开发 回顾: 页面制作 页面架构 JavaScript程序设计 DOM编程艺术 产品前端架构 实践课Mini项目--Ego: 主题:漫 ...
- Python爬虫使用浏览器的cookies:browsercookie
很多用Python的人可能都写过网络爬虫,自动化获取网络数据确实是一件令人愉悦的事情,而Python很好的帮助我们达到这种愉悦.然而,爬虫经常要碰到各种登录.验证的阻挠,让人灰心丧气(网站:天天碰到各 ...
- Zookeeper与Eureka的区别
Zookeeper与Eureka的区别 想要了解Zk与eureka的区别首先要知道CAP定理 CAP定理 Mysql强一致性(数据唯一出处),设计数据库设计的三范式 (表必须有主键:表不能有重复的列: ...