【BZOJ5301】【CQOI2018】异或序列(莫队)

题面

BZOJ

洛谷

Description

已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l、r ,问在 [l,r] 区间内,有多少连续子

序列满足异或和等于 k 。

也就是说,对于所有的 x,y (l≤x≤y≤r),能够满足a[x]a[x+1]…^a[y]=k的x,y有多少组。

Input

输入文件第一行,为3个整数n,m,k。

第二行为空格分开的n个整数,即ai,a2,….an。

接下来m行,每行两个整数lj,rj,表示一次查询。

1≤n,m≤105,O≤k,ai≤105,1≤lj≤rj≤n

Output

输出文件共m行,对应每个查询的计算结果。

Sample Input

4 5 1

1 2 3 1

1 4

1 3

2 3

2 4

4 4

Sample Output

4

2

1

2

1

题解

板子题+原题

我也没有什么好说的了。

果然是模板大赛啊。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 111111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll ans[MAX],Ans;
int n,m,K,blk,num[MAX],a[MAX];
struct Query{int l,r,id,lb;}q[MAX];
bool operator<(Query a,Query b){if(a.lb!=b.lb)return a.lb<b.lb;return a.r<b.r;}
void Add(int x){Ans+=num[K^a[x]],++num[a[x]];}
void Del(int x){--num[a[x]],Ans-=num[K^a[x]];}
int main()
{
n=read();m=read();K=read();blk=sqrt(n);
for(int i=1;i<=n;++i)a[i]=read()^a[i-1];
for(int i=1;i<=m;++i)
{
int l=read(),r=read();
q[i]=(Query){l-1,r,i,l/blk};
}
sort(&q[1],&q[m+1]);
int L=0,R=-1;
for(int i=1;i<=m;++i)
{
while(R<q[i].r)Add(++R);
while(L>q[i].l)Add(--L);
while(L<q[i].l)Del(L++);
while(R>q[i].r)Del(R--);
ans[q[i].id]=Ans;
}
for(int i=1;i<=m;++i)printf("%lld\n",ans[i]);
return 0;
}

【BZOJ5301】【CQOI2018】异或序列(莫队)的更多相关文章

  1. BZOJ5301:[CQOI2018]异或序列(莫队)

    Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...

  2. bzoj 5301 [Cqoi2018]异或序列 莫队

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 155[Submit][Status ...

  3. bzoj 5301: [Cqoi2018]异或序列 (莫队算法)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...

  4. 洛谷P4462 [CQOI2018]异或序列(莫队)

    题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...

  5. [CQOI2018]异或序列 (莫队,异或前缀和)

    题目链接 Solution 有点巧的莫队. 考虑到区间 \([L,R]\) 的异或和也即 \(sum[L-1]~\bigoplus~sum[R]\) ,此处\(sum\)即为异或前缀和. 然后如何考虑 ...

  6. P4462 [CQOI2018]异或序列 莫队

    题意:给定数列 \(a\) 和 \(k\) ,询问区间 \([l,r]\) 中有多少子区间满足异或和为 \(k\). 莫队.我们可以记录前缀异或值 \(a_i\),修改时,贡献为 \(c[a_i\bi ...

  7. CQOI2018异或序列 [莫队]

    莫队板子 用于复习 #include <cstdio> #include <cstdlib> #include <algorithm> #include <c ...

  8. luogu P4462 [CQOI2018]异或序列 |莫队

    题目描述 已知一个长度为n的整数数列a1,a2,...,an,给定查询参数l.r,问在al,al+1,...,ar​区间内,有多少子序列满足异或和等于k.也就是说,对于所有的x,y (I ≤ x ≤ ...

  9. BZOJ5301: [Cqoi2018]异或序列(莫队)

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 400  Solved: 291[Submit][Status ...

  10. [bzoj5301][Cqoi2018]异或序列_莫队

    异或序列 bzoj-5301 Cqoi-2018 题目大意:题目链接. 注释:略. 想法: 由于a^a=0这个性质,我们将所有的数变成异或前缀和. 所求就变成了求所有的$l_i\le x<y\l ...

随机推荐

  1. 新版本Eclipse安装后插件都在哪里?

    201903版本的Eclipse,选择win安装,下载后的安装包大小只有48.7Mb, 双击安装会会弹出类似eclipse网页,选择需要安装的类型,一般选择Java EE版本 选择好版本后,选择安装目 ...

  2. 从golang的垃圾回收说起(上篇)

    本文来自网易云社区 1 垃圾回收中的重要概念 1.1 定义 In computer science, garbage collection (GC) is a form of automatic me ...

  3. 金山注入浏览器默认开启上网导航 www.uu114.cn

    金山注入浏览器默认开启上网导航 www.uu114.cn 今天突然发现我的电脑所有浏览器打开后,都会默认打开一个www.uu114.cn网站,chrome.firefox和IE都中招了.经过排查,发现 ...

  4. JQuery.extend扩展实现同步post请求

    有时需要在jQuery中实现同步post请求,而jquery自带的是异步,需要通过JQuery.extend扩展. 支持ie和firefox,方法转载而来.需要在submit前将form.append ...

  5. 你的APK安全吗?来WeTest免费测!

    腾讯安全联合实验室就曾在<2018上半年互联网黑产研究报告>指出,移动端黑产规模宏大,恶意推广日均影响用户超过千万. 尤其在网络强相关的APP流行年代,当APP应用客户端上传与获取信息,大 ...

  6. Android 9 适配怎么做? “QQ音乐”优化实录

    WeTest 导读 2018年8月7日,Google对外发布最新 Android 9.0 正式版系统,并宣布系统版本Android P 被正式命名为代号“Pie”,最新系统已经正式推送包括谷歌Pixe ...

  7. java 泛型历史遗留问题

    Map<String,Integer> hashMap = new HashMap<String,Integer>(); hashMap.put(); // hashMap.p ...

  8. 「日常训练」Equation(HDU-5937)

    题意与分析 时隔一个月之后来补题.说写掉的肯定会写掉. 题意是这样的:给1~9这些数字,每个数字有\(X_i\)个,问总共能凑成多少个不同的等式\(A+B=C\)(\(A,B,C\)均为1位,\(1+ ...

  9. 180612-Spring之Yml配置文件加载问题

    Yml配置文件加载问题 在resource目录下有一个application.yml文件,希望是通过@PropertySource注解,将配置文件数据读取到Environment中,然而调试发现数据始 ...

  10. 第三模块:面向对象&网络编程基础 第4章 FTP项目作业讲解

    01-FTP项目需求 02-FTP项目框架搭建 03-FTP项目用户认证 04--FTP项目制定标准定长消息头 05-FTP项目下载功能开发 06-FTP项目下载功能开发2 07-FTP项目ls文件列 ...