Codeforces 671 A——Recycling Bottles——————【思维题】
2 seconds
256 megabytes
standard input
standard output
It was recycling day in Kekoland. To celebrate it Adil and Bera went to Central Perk where they can take bottles from the ground and put them into a recycling bin.
We can think Central Perk as coordinate plane. There are n bottles on the ground, the i-th bottle is located at position (xi, yi). Both Adil and Bera can carry only one bottle at once each.
For both Adil and Bera the process looks as follows:
- Choose to stop or to continue to collect bottles.
- If the choice was to continue then choose some bottle and walk towards it.
- Pick this bottle and walk to the recycling bin.
- Go to step 1.
Adil and Bera may move independently. They are allowed to pick bottles simultaneously, all bottles may be picked by any of the two, it's allowed that one of them stays still while the other one continues to pick bottles.
They want to organize the process such that the total distance they walk (the sum of distance walked by Adil and distance walked by Bera) is minimum possible. Of course, at the end all bottles should lie in the recycling bin.
First line of the input contains six integers ax, ay, bx, by, tx and ty (0 ≤ ax, ay, bx, by, tx, ty ≤ 109) — initial positions of Adil, Bera and recycling bin respectively.
The second line contains a single integer n (1 ≤ n ≤ 100 000) — the number of bottles on the ground.
Then follow n lines, each of them contains two integers xi and yi (0 ≤ xi, yi ≤ 109) — position of the i-th bottle.
It's guaranteed that positions of Adil, Bera, recycling bin and all bottles are distinct.
Print one real number — the minimum possible total distance Adil and Bera need to walk in order to put all bottles into recycling bin. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct if
.
3 1 1 2 0 0
3
1 1
2 1
2 3
11.084259940083
5 0 4 2 2 0
5
5 2
3 0
5 5
3 5
3 3
33.121375178000
Consider the first sample.
Adil will use the following path:
.
Bera will use the following path:
.
Adil's path will be
units long, while Bera's path will be
units long.
题目大意: 给你ax,ay, bx,by, tx,ty。a、b两个人的坐标和垃圾桶的坐标。下面是n,然后n个瓶子的坐标xi,yi。两个人都只能拿到一个瓶子然后送回垃圾桶,然后再去捡其他瓶子。问你当所有瓶子都放入垃圾桶时,两个人一共走的最短距离是多少。
解题思路:假设a,b两人和垃圾桶在同一初始位置。那么所有瓶子放入垃圾桶时的距离为2*sigma(disti),dist表示垃圾桶到其他瓶子的距离,我们把这个值设为sum。现在考虑a如果开始捡第一瓶子i,那么所要走的距离为disa[i]-dist[i]+sum,考虑b如果开始捡第一个瓶子j,那么要走的距离为disb[i]-dist[i]+sum。现在我们维护两个数组a[i]表示a第一次捡i这个瓶子时要走的距离,b[i]表示b第一次要捡i瓶子时要走的距离。我们维护b最小的两个值,同时记录id。然后枚举a数组,同时,如果所维护的两个id中有一个是所枚举的a数组下标,那么b就取另一个,否则取最小的值更新结果。
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
const int mod = 1e9+7;
const int maxn = 1e5+200;
const LL INF = 0x3f3f3f3f3f3f3f3f;
struct Coor{
double x, y;
}coors[maxn];
double Distan(Coor a, Coor b){
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
double disa[maxn], disb[maxn];
int main(){
int n;
Coor a, b, t;
while(scanf("%lf%lf %lf%lf %lf%lf",&a.x,&a.y,&b.x,&b.y,&t.x,&t.y)!=EOF){
scanf("%d",&n);
double dt;
double sum = 0;
double opt1 = double(INF), opt2 = double(INF);
int opt1id = 1, opt2id = 1;
for(int i = 1; i <= n; i++){
scanf("%lf%lf",&coors[i].x,&coors[i].y);
dt = Distan(coors[i], t);
sum += 2.0*dt;
disa[i] = Distan(coors[i], a) - dt;
disb[i] = Distan(coors[i], b) - dt;
if(disb[i] < opt1){
swap(opt1, opt2);
swap(opt1id,opt2id);
opt1 = disb[i];
opt1id = i;
}else if(disb[i] < opt2){
opt2 = disb[i];
opt2id = i;
}
}
double ans = double(INF);
for(int i = 1; i <= n; i++){
ans = min(ans, sum + disa[i]);
}
for(int i = 1; i <= n; i++){
ans = min(ans, sum + disb[i]);
}
if(n == 1){
printf("%.8lf",ans); continue;
}
for(int i = 1; i <= n; i++){
if(i == opt1id){
ans = min(ans, sum + disa[i]+disb[opt2id]);
}else{
ans = min(ans, sum + disa[i] + disb[opt1id]);
}
}
printf("%.7lf",ans);
}
return 0;
}
Codeforces 671 A——Recycling Bottles——————【思维题】的更多相关文章
- C. Nice Garland Codeforces Round #535 (Div. 3) 思维题
C. Nice Garland time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- codeforces 672C C. Recycling Bottles(计算几何)
题目链接: C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- Codeforces 515C 题解(贪心+数论)(思维题)
题面 传送门:http://codeforces.com/problemset/problem/515/C Drazil is playing a math game with Varda. Let’ ...
- 【18.69%】【codeforces 672C】Recycling Bottles
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- Codeforces 1188B - Count Pairs(思维题)
Codeforces 题面传送门 & 洛谷题面传送门 虽说是一个 D1B,但还是想了我足足 20min,所以还是写篇题解罢( 首先注意到这个式子里涉及两个参数,如果我们选择固定一个并动态维护另 ...
- Codeforces 1365G - Secure Password(思维题)
Codeforces 题面传送门 & 洛谷题面传送门 首先考虑一个询问 \(20\) 次的方案,考虑每一位,一遍询问求出下标的这一位上为 \(0\) 的位置上值的 bitwise or,再一遍 ...
- Codeforces 1129E - Legendary Tree(思维题)
Codeforces 题面传送门 & 洛谷题面传送门 考虑以 \(1\) 为根,记 \(siz_i\) 为 \(i\) 子树的大小,那么可以通过询问 \(S=\{2,3,\cdots,n\}, ...
- CodeForces - 427A (警察和罪犯 思维题)
Police Recruits Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u Sub ...
- codeforces 848B Rooter's Song 思维题
http://codeforces.com/problemset/problem/848/B 给定一个二维坐标系,点从横轴或纵轴垂直于发射的坐标轴射入(0,0)-(w,h)的矩形空间.给出点发射的坐标 ...
随机推荐
- INDEX--索引相关信息查看
--============================================== --查看可能缺失的索引 SELECT mig.* ,migs.* ,mid.* FROM sys.dm ...
- java web 中分布式 session 的实现
已经有现成的库现实现分布式的 session 管理: 1.memcached-session-manager. 2.tomcat-redis-session-manager. 3.spring-ses ...
- List<object>进行Distinct()去重
有时我们会对一个list<T>集合里的数据进行去重,C#提供了一个Distinct()方法直接可以点得出来.如果list<T>中的T是个自定义对象时直接对集合Distinct是 ...
- Python进程间通信之共享内存
前一篇博客说了怎样通过命名管道实现进程间通信,但是要在windows是使用命名管道,需要使用python调研windows api,太麻烦,于是想到是不是可以通过共享内存的方式来实现.查了一下,Pyt ...
- Mac与iPhone的使用
1.mac操作 苹果Mac操作系统下怎么显示隐藏文件(shift+cmmand+. ) Mac屏幕录制Gif Mac 键盘快捷键 Mac 上安装python3 2.iPhone操作 iPhone如何设 ...
- IO模型《五》异步IO
Linux下的asynchronous IO其实用得不多,从内核2.6版本才开始引入.先看一下它的流程: 用户进程发起read操作之后,立刻就可以开始去做其它的事.而另一方面,从kernel的角度,当 ...
- offsetWidth和width的区别
1.offsetWidth属性可以返回对象的padding+border+width属性值之和,style.width返回值就是定义的width属性值. 2.offsetWidth属性仅是可读属性,而 ...
- VMware虚拟机中如何配置静态IP
我们首先说一下VMware的几个虚拟设备 VMnet0:用于虚拟桥接网络下的虚拟交换机 VMnet1:用于虚拟Host-Only网络下的虚拟交换机 VMnet8:用于虚拟NAT网络下的虚拟交换机 VM ...
- php面试题汇集2
1.实现中文字符串截取无乱码方法 开启mbstring扩展,然后自定义函数: <?php header('content-Type:text/html:charset=utf-8'); func ...
- 程序设计中的dry原则
DRY:dont repeat yourself 假设一个逻辑(代码块)会重复两次或者以上,应该写成函数被调用 为什么呢,实际上,我们处处可见重复性的代码.这除了增加工作量之外,还会增加维护难度. d ...