Caffe 学习笔记1

本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权

欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing

这篇博客是caffe官网的一片例程吧,只是熟悉一下操作而已

http://caffe.berkeleyvision.org/gathered/examples/cifar10.html

1、准备数据

cd /home/wangshuo/caffe (这个路径为caffe安装路径)

./data/cifar10/get_cifar10.sh

./examples/cifar10/create_cifar10.sh

运行之后将会有图像均值二进制文件./mean.binaryproto和数据库文件./cifar10_test_lmdb和cifar10_train_lmdb文件夹

2、模型简介

Cifar10是一个由卷积层,池化层,非线性变换层,线性函数RELU,以及在顶端的局部对比归一化的线性分类器组成,该模型在/caffe/examples/cifar10文件夹下面,该文件为名称为cifar10_quick_train_test.prototxt

3、训练和测试该模型

当你写好的网络参数的,设置文件就可以运行train_quick.sh文件

cd $CAFFE_ROOT

./examples/cifar10/train_quick.sh

train_quick.sh 是一个简单的脚本文件,打开它可以看到训练工具叫caffe执行训练操作,然后根据的参数是slover protobuf所设置的。

执行该脚本文件:输出:

I0317 21:52:48.945710 2008298256 net.cpp:74] Creating Layer conv1

I0317 21:52:48.945716 2008298256 net.cpp:84] conv1 <- data

I0317 21:52:48.945725 2008298256 net.cpp:110] conv1 -> conv1

I0317 21:52:49.298691 2008298256 net.cpp:125] Top shape: 100 32 32 32 (3276800)

I0317 21:52:49.298719 2008298256 net.cpp:151] conv1 needs backward computation.

这个信息告诉我们每一层的组成和输出形式,初始化完毕,开始训练。

I0317 21:52:49.309370 2008298256 net.cpp:166] Network initialization done.

I0317 21:52:49.309376 2008298256 net.cpp:167] Memory required for Data 23790808

I0317 21:52:49.309422 2008298256 solver.cpp:36] Solver scaffolding done.

I0317 21:52:49.309447 2008298256 solver.cpp:47] Solving CIFAR10_quick_train

根据设置的solver,每迭代100次就会输出训练的学习率和训练损失函数,每迭代500次会测试一次,输出准确率score 0和测试损失函数score 1

I0317 22:12:19.666914 2008298256 solver.cpp:87] Iteration 5000, Testing net

I0317 22:12:25.580330 2008298256 solver.cpp:114] Test score #0: 0.7533

I0317 22:12:25.580379 2008298256 solver.cpp:114] Test score #1: 0.739837

I0317 22:12:25.587262 2008298256 solver.cpp:130] Snapshotting to cifar10_quick_iter_5000

I0317 22:12:25.590215 2008298256 solver.cpp:137] Snapshotting solver state to cifar10_quick_iter_5000.solverstate

I0317 22:12:25.592813 2008298256 solver.cpp:81] Optimization Done.

最后得到这个模型的测试准确率达到75%,模型参数会被写到一个文件里头

cifar10_quick_iter_5000

4、其他

更改cifar*solver.prototxt文件,可以修改训练的方式,是用GPU还是用cpu

# solver mode: CPU or GPU

solver_mode: CPU

5、遇到的问题

问题:在执行create_cifar10.sh时,提示文件convert_cifar_data.bin不存在。

解决方法:上面命令./create_cifar10.sh必须在根目录下运行

参考:http://caffe.berkeleyvision.org/gathered/examples/cifar10.html

Caffe 学习笔记1的更多相关文章

  1. Caffe学习笔记2--Ubuntu 14.04 64bit 安装Caffe(GPU版本)

    0.检查配置 1. VMWare上运行的Ubuntu,并不能支持真实的GPU(除了特定版本的VMWare和特定的GPU,要求条件严格,所以我在VMWare上搭建好了Caffe环境后,又重新在Windo ...

  2. Caffe学习笔记(三):Caffe数据是如何输入和输出的?

    Caffe学习笔记(三):Caffe数据是如何输入和输出的? Caffe中的数据流以Blobs进行传输,在<Caffe学习笔记(一):Caffe架构及其模型解析>中已经对Blobs进行了简 ...

  3. Caffe学习笔记(二):Caffe前传与反传、损失函数、调优

    Caffe学习笔记(二):Caffe前传与反传.损失函数.调优 在caffe框架中,前传/反传(forward and backward)是一个网络中最重要的计算过程:损失函数(loss)是学习的驱动 ...

  4. Caffe学习笔记(一):Caffe架构及其模型解析

    Caffe学习笔记(一):Caffe架构及其模型解析 写在前面:关于caffe平台如何快速搭建以及如何在caffe上进行训练与预测,请参见前面的文章<caffe平台快速搭建:caffe+wind ...

  5. Caffe学习笔记4图像特征进行可视化

    Caffe学习笔记4图像特征进行可视化 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit201 ...

  6. Caffe学习笔记3

    Caffe学习笔记3 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和h ...

  7. Caffe学习笔记2

    Caffe学习笔记2-用一个预训练模型提取特征 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hi ...

  8. CAFFE学习笔记(五)用caffe跑自己的jpg数据

    1 收集自己的数据 1-1 我的训练集与测试集的来源:表情包 由于网上一幅一幅图片下载非常麻烦,所以我干脆下载了两个eif表情包.同一个表情包里的图像都有很强的相似性,因此可以当成一类图像来使用.下载 ...

  9. CAFFE学习笔记(四)将自己的jpg数据转成lmdb格式

    1 引言 1-1 以example_mnist为例,如何加载属于自己的测试集? 首先抛出一个问题:在example_mnist这个例子中,测试集是人家给好了的.那么如果我们想自己试着手写几个数字然后验 ...

随机推荐

  1. vc6.0批量加注释

    MATLAB批量加注释的方法非常简单明了,加注释是ctrl+R,去注释是ctrl+T 然后在VC中我对一条一条加注释的方法非常烦恼,我想也许会有简单的方法可以批量家注释.果然,先贴代码 '------ ...

  2. mysql学习之主从复制

    该文使用mysql5.5 centos6.5 64位 一.主从复制的作用 1.如果主服务器出现问题,可以快速切换到从服务器. 2.对与实时性要求不高或者更新不频繁的应用可以在从服务器上执行查询操作,降 ...

  3. AngularJS 学习笔记--01

    学习 AngularJS 要先了解 MVC 模式 , 即 " 模型--视图--控制器 " . 模型: 包含了需要用到的数据 ; 有两种广义上的模型 : 视图模型 , 只表示从控制器 ...

  4. codeforces 987 D. Fair

    D. Fair time limit per test 2 seconds memory limit per test 512 megabytes input standard input outpu ...

  5. hdu 2962 Trucking (最短路径)

    Trucking Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. CMD命令提示符

    mspaint  画图板 notepad  打开记事本 write  写字板 calc.exe  计算器 control.exe  控制面板 osk  打开屏幕键盘 rononce -p ----15 ...

  7. HDU3157:Crazy Circuits——题解

    http://acm.hdu.edu.cn/showproblem.php?pid=3157 题目大意:给一个电路 ,起点为+,终点为-,包括起点终点在内的电元件之间有有下界边,求最小流. ————— ...

  8. 洛谷3934:Nephren Ruq Insania——题解

    https://www.luogu.org/problemnew/show/P3934 题面自己读吧(滑稽. 看到这道题就能够想到BZOJ4869:[SHOI2017]相逢是问候我们曾经用过的哲学扩展 ...

  9. BZOJ4539 [Hnoi2016]树 【倍增 + 主席树】

    题目链接 BZOJ4539 题解 我们把每次复制出来的树看做一个点,那么大树实际上也就是一棵\(O(M)\)个点的树 所以我们只需求两遍树上距离: 大树上求距离,进入同一个点后在模板树上再求一次距离 ...

  10. React Patterns

    Contents Stateless function JSX spread attributes Destructuring arguments Conditional rendering Chil ...