最小生成树与Prim算法
最小生成树(MST)
定义
首先是一棵树(废话
其次没有回路(废话
包含全部顶点和V-1条边
边的权重和最小!!!!!
所以如果是单棵最小生成树,至少说明图是连通的。不然就是森林。
生成思路
既然是根据图生成树,那么至少要有遍历图。那么,便要从一个源点出发,来一场愉快的深搜或广搜。
深搜生成就叫DFS树(深度优先搜索树
广搜生成就叫BFS树(广度优先搜索树
我们只需要在if语句中,在递归调用语句之前做一点手脚,便可以达到目的。
Prim算法——让一棵小树长大
(别装了!Dijkstra我知道是你!)
时间复杂度
O(n^2),是根据图生成最小树的算法。
算法思路
是一个穿了马甲的Dijkstra算法。用的是蓝白点的思想。
Dijkstra是啥?https://www.cnblogs.com/Uninstalllingyi/p/10417446.html
每次循环都把一个蓝点u变成白点。并且这个蓝点u与白点相连的边权势当前所有蓝点中最小的min[u]
仔细想想,是贪心的思路哟…
好的,我们来手工模拟一下。求下面这个图的最小生成树。(里面是伪代码哟)

(emm…其实这个是绿白点…没事你就假装一下色盲。)
初始所有的点全都是蓝点,所以说这里有一个数组min[i]来表示一下。那么除了起点,其他的全部初始化为无穷大(0x3f)。即min[1]=0。权值之和用int MST=0来保存。
那么第一次循环就没什么说的了,min[1]=0是最小的蓝点,然后把1变白。然后枚举和a相连的蓝点,修改它们与白点相连的最小边权(就是min数组啦)

min[]=map[][]=;
min[]=map[][]=;
min[]=map[][]=;
第二次循环找到min[2]是最小的蓝点,变白。然后更新相连的蓝点。bulabulabula。

min[]=map[][]=; min[]=map[][]=;
第三次循环…找到min[3]=1是最小的那个…变白…更新蓝点最小值…

min[]=map[][]=;
哦,这里要注意一下,因为min[5]=2<6,所以5不用更新。
第四次循环找到点4,第五次循环找到点5.反正他们也没相连的蓝点了,所以直接变白叭。

那么,最后得到的权值之和是…
min[]+min[]+min[]+min[]+min[]=
++++=;
以1为起点生成最小生成树,min[v]表示蓝点与白点相连的最小边权。
MST表示最小生成树的权值之和。
⑴初始化min[v]=∞(v≠);min[]=;MST=;
⑵for(int i=;i<=n;i++){
①寻找min[u]最小的蓝点u
②将u标记为白点
③MST+=min[u]
④for(int v=;v<=n;v++)//与白点u相连的所有蓝点v
if(w[u][v]<min[v]) min[v]=w[u][v]//注:w[u][v]表示第u行第v个元素。第u行表示和白点u相连的所有的点。
}
⑶算法结束,MST即为最小生成树的权值之和。
高能伪代码
这里有一道洛谷的模板题
https://www.luogu.org/problemnew/show/P3366
#include<iostream>
#include<cstring>
#include<cstdio>
//prim算法
using namespace std;
const int maxx=0x3f3f3f3f;
const int MAXN=;
int n,m,x,y,z,map[MAXN][MAXN],minn[MAXN],MST=,vis[MAXN];
int main(){
scanf("%d%d",&n,&m);
memset(map,0x3f,sizeof(map));
for(int i=;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
if(map[x][y]>z){
map[x][y]=map[y][x]=z;
}
}
memset(minn,0x3f,sizeof(minn));
minn[]=;
for(int i=;i<=n;i++){
int u=;
for(int j=;j<=n;j++){
if(!vis[j]&&minn[u]>minn[j]){
u=j;
}
}
vis[u]=true;
MST+=minn[u];
for(int v=;v<=n;v++){
if(!vis[v]&&map[u][v]<minn[v]){
minn[v]=map[u][v];
}
}
}
printf("%d\n",MST); }
(倒是头一次知道洛谷如果不加cstdio的头文件是不可以用printf的…尴尬。
最小生成树与Prim算法的更多相关文章
- C++编程练习(10)----“图的最小生成树“(Prim算法、Kruskal算法)
1.Prim 算法 以某顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树. 2.Kruskal 算法 直接寻找最小权值的边来构建最小生成树. 比较: Kruskal 算法主要是针对边来展开,边数 ...
- 最小生成树一·Prim算法
描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问题也接踵而来——小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道 ...
- 数据结构与算法--最小生成树之Prim算法
数据结构与算法--最小生成树之Prim算法 加权图是一种为每条边关联一个权值或称为成本的图模型.所谓生成树,是某图的一棵含有全部n个顶点的无环连通子图,它有n - 1条边.最小生成树(MST)是加权图 ...
- 24最小生成树之Prim算法
最小生成树的Prim算法 思想:采用子树延伸法 将顶点分成两类: 生长点——已经在生成树上的顶点 非生长点——未长到生成树上的顶点 使用待选边表: 每个非生长点在待选边表中有一条待选边,一端连着非生长 ...
- 最小生成树的Prim算法
构造最小生成树的Prim算法 假设G=(V,E)为一连通网,其中V为网中所有顶点的集合,E为网中所有带权边的集合.设置两个新的集合U和T,其中集合U用于存放G的最小生成树的顶点,集合T用于 ...
- hihocoder 1097 最小生成树一·Prim算法
#1097 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可 ...
- 算法学习记录-图——最小生成树之prim算法
一个连通图的生成树是一个极小的连通子图,它包含图中全部的顶点(n个顶点),但只有n-1条边. 最小生成树:构造连通网的最小代价(最小权值)生成树. prim算法在严蔚敏树上有解释,但是都是数学语言,很 ...
- Hihocoder 之 #1097 : 最小生成树一·Prim算法 (用vector二维 模拟邻接表,进行prim()生成树算法, *【模板】)
#1097 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可 ...
- hihocoder hiho一下 第二十六周 最小生成树一·(Prim算法)
题目1 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥 ...
- 无向图最小生成树(prim算法)
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小.该算法于1930年由捷 ...
随机推荐
- win7下添加库文件出现“file is not regcognized”问题
最近几天需要画电路图,所以安装了protel se99,安装后在添加库文件的时候出现“file is not regcognized”的问题 百度查了一下,说win7基本上都会出现这个问题. 实际上, ...
- Linux - CentOS 7 yum方式快速安装MongoDB
一.安装环境及配置yum # more /etc/redhat-release CentOS Linux release 7.2.1511 (Core) # vi /etc/yum.repos.d/m ...
- kendo UI 倒如css 和 js 后 窗口控件上的工具栏图标不显示如何解决
examples 文档中找到window的例子打开一个 查看其中文件引入 <head> <title>API</title> <meta char ...
- DB数据源之SpringBoot+MyBatis踏坑过程(六)mysql中查看连接,配置连接数量
DB数据源之SpringBoot+MyBatis踏坑过程(六)mysql中查看连接,配置连接数量 liuyuhang原创,未经允许禁止转载 系列目录连接 DB数据源之SpringBoot+Mybati ...
- Vue--- 一点车项目 连接数据库 数据使用
Vue--- 一点车项目 连接数据库 数据使用 后台服务器 返回数据 处理 created 这个钩子在实例被创建之后被调用: async created(){ // 分类 catelist { le ...
- BufPay.com 个人收款接口 接入步骤
作为独立开发者产品需要收款是非常麻烦的,注册公司维护成本太高,市面上各种收款工具要么手续费太高,要么到账很慢,体验很不好. 看到 「BufPay.com 个人收款」 这个收款工具,挺有意思的.原理是监 ...
- CodeChef March Lunchtime 2018 div2
地址https://www.codechef.com/LTIME58B?order=desc&sortBy=successful_submissions 简单做了一下,前三题比较水,第四题应该 ...
- oracle编程300例-性能优化(一)
1.在SELECT语句中避免使用“*” 2.尽可能减小记录行数 3.使用rowid高效删除重复记录 实例: delete from stu s where s.rowid>(select min ...
- C#远程连接postgresql数据库
第一次在项目中遇到远程访问postgresql数据库的,当时经常会出现连接数据库的错误,连接字符串出现乱码现象 解决方案 在配置文件中添加连接字符串 <add key="Informa ...
- 大专生自学web前端到找到工作的前前后后
先做个自我介绍,我13年考上一所很烂专科民办的学校,学的是生物专业,具体的学校名称我就不说出来献丑了.13年我就辍学了,我在那样的学校,一年学费要1万多,但是根本没有人学习,我实在看不到希望,我就退学 ...