1150: [CTSC2007]数据备份Backup

Description

  你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份。然而数据备份的工作是枯燥乏味
的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣。已知办公
楼都位于同一条街上。你决定给这些办公楼配对(两个一组)。每一对办公楼可以通过在这两个建筑物之间铺设网
络电缆使得它们可以互相备份。然而,网络电缆的费用很高。当地电信公司仅能为你提供 K 条网络电缆,这意味
着你仅能为 K 对办公楼(或总计2K个办公楼)安排备份。任一个办公楼都属于唯一的配对组(换句话说,这 2K 
个办公楼一定是相异的)。此外,电信公司需按网络电缆的长度(公里数)收费。因而,你需要选择这 K 对办公
楼使得电缆的总长度尽可能短。换句话说,你需要选择这 K 对办公楼,使得每一对办公楼之间的距离之和(总距
离)尽可能小。下面给出一个示例,假定你有 5 个客户,其办公楼都在一条街上,如下图所示。这 5 个办公楼分
别位于距离大街起点 1km, 3km, 4km, 6km 和 12km 处。电信公司仅为你提供 K=2 条电缆。
  上例中最好的配对方案是将第 1 个和第 2 个办公楼相连,第 3 个和第 4 个办公楼相连。这样可按要求使用
 K=2 条电缆。第 1 条电缆的长度是 3km-1km=2km ,第 2 条电缆的长度是 6km-4km=2km。这种配对方案需要总长
 4km 的网络电缆,满足距离之和最小的要求。

Input

  输入的第一行包含整数n和k,其中n(2 ≤ n ≤100 000)表示办公楼的数目,k(1≤ k≤ n/2)表示可利用
的网络电缆的数目。接下来的n行每行仅包含一个整数(0≤ s ≤1000 000 000), 表示每个办公楼到大街起点处
的距离。这些整数将按照从小到大的顺序依次出现。

Output

  输出应由一个正整数组成,给出将2K个相异的办公楼连成k对所需的网络电缆的最小总长度。

Sample Input

5 2
1
3
4
6
12

Sample Output

4

HINT

Source

【分析】

  这已经很经典了吧。

  贪心+一个后悔操作就好了,优先队列优化。

  具体见:【BZOJ 2151】http://www.cnblogs.com/Konjakmoyu/p/6284056.html

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 100100 struct node
{
int id,x;
friend bool operator < (node x,node y)
{
return x.x>y.x;
}
}; priority_queue<node > q; int a[*Maxn],lt[*Maxn],nt[*Maxn];
bool mark[*Maxn]; int main()
{
int n,k;
scanf("%d%d",&n,&k);
int now,nw;
scanf("%d",&now);
for(int i=;i<=n;i++)
{
scanf("%d",&nw);
a[i-]=nw-now;
now=nw;
}
n--;
while(!q.empty()) q.pop();
for(int i=;i<=n;i++) nt[i]=i+;nt[n]=-;
for(int i=;i<=n;i++) lt[i]=i-;
for(int i=;i<=n;i++)
{
node xx;
xx.id=i;xx.x=a[i];
q.push(xx);
}
memset(mark,,sizeof(mark));
int ans=,cnt=n;
for(int i=;i<=k;i++)
{
while(mark[q.top().id]) q.pop();
node xx;
xx=q.top();q.pop();
ans+=xx.x;
if(lt[xx.id]==)
{
mark[nt[xx.id]]=;
lt[nt[nt[xx.id]]]=;
}
else if(nt[xx.id]==-)
{
mark[lt[xx.id]]=;
nt[lt[lt[xx.id]]]=-;
}
else
{
mark[nt[xx.id]]=;
mark[lt[xx.id]]=;
cnt++;
nt[lt[lt[xx.id]]]=cnt;
lt[nt[nt[xx.id]]]=cnt;
lt[cnt]=lt[lt[xx.id]];
nt[cnt]=nt[nt[xx.id]];
node nw;
nw.id=cnt;
nw.x=a[lt[xx.id]]+a[nt[xx.id]]-xx.x;
a[cnt]=nw.x;
q.push(nw);
}
}
printf("%d\n",ans);
return ;
}

2017-01-14 10:04:32

【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)的更多相关文章

  1. BZOJ1150 [CTSC2007] 数据备份Backup 贪心_堆_神题

    Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家 ...

  2. 【BZOJ 1150】[CTSC2007]数据备份Backup

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 选择的连接肯定是相邻的点对. 那么我们处理出来长度为n-1的数组a 其中a[i-1] = dis[i]-dis[i-1] 那么问题就 ...

  3. BZOJ1150 [CTSC2007]数据备份Backup 贪心 堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1150 题意概括 数轴上面有一堆数字. 取出两个数字的代价是他们的距离. 现在要取出k对数,(一个数 ...

  4. 【链表】bzoj 1150: [CTSC2007]数据备份Backup

    1150: [CTSC2007]数据备份Backup Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1136  Solved: 458[Submit] ...

  5. 1150: [CTSC2007]数据备份Backup

    1150: [CTSC2007]数据备份Backup https://lydsy.com/JudgeOnline/problem.php?id=1150 分析: 堆+贪心. 每次选最小的并一定是最优的 ...

  6. bzoj1150 [CTSC2007]数据备份Backup 双向链表+堆

    [CTSC2007]数据备份Backup Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2727  Solved: 1099[Submit][Stat ...

  7. 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)

    [BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...

  8. BZOJ1150 [CTSC2007]数据备份Backup 链表+小根堆

    BZOJ1150 [CTSC2007]数据备份Backup 题意: 给定一个长度为\(n\)的数组,要求选\(k\)个数且两两不相邻,问最小值是多少 题解: 做一个小根堆,把所有值放进去,当选择一个值 ...

  9. bzoj 1150: [CTSC2007]数据备份Backup

    Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家 ...

随机推荐

  1. [uva11137]立方数之和·简单dp

    小水题再来一发 给定一个正整数n<=1e4,求将n写成若干个正整数立方和的方法数 典型的多阶段模型 f[i][j]表示当前用到1~i的数,累计和为j的方案数. #include<cstdi ...

  2. bzoj 1705: [Usaco2007 Nov]Telephone Wire 架设电话线——dp

    Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= ...

  3. Kubernetes: 集群网络配置 - flannel

    参考: [ Kubernetes 权威指南 ] Kubernetes 集群搭建可以参考 [ Kubernetes : 多节点 k8s 集群实践 ] 在多个 Node 组成的 Kubernetes 集群 ...

  4. ubuntu 玩转 nodejs

    安装nginx 首先添加nginx_signing.key(必须,否则出错) $ wget http://nginx.org/keys/nginx_signing.key $ sudo apt-key ...

  5. bzoj 2121 DP

    首先如果我们能处理出来i,j段能不能消掉,这样就可以直接dp转移了,设w[i]为前i为最少剩下多少,那么w[i]=w[j-1] (flag[j][i]). 现在我们来求flag[i][j],首先我们可 ...

  6. Coursera在线学习---第八节.K-means聚类算法与主成分分析(PCA)

    一.K-means聚类中心初始化问题. 1)随机初始化各个簇类的中心,进行迭代,直到收敛,并计算代价函数J. 如果k=2~10,可以进行上述步骤100次,并分别计算代价函数J,选取J值最小的一种聚类情 ...

  7. Perl6 Bailador框架(1):开始

    use v6; use Bailador; get '/' => sub { '<h1><center>Hello, World</center></h ...

  8. 【玲珑杯Round17】xjb总结

    zcy真是垃圾,啥都不会的那种. 菜的不行. 这场手速上了三题,然后各种E被卡…… 日个吗居然E不开栈,傻逼吧 有毒吧 来看题: A.sqc给的我的神奇公式,gtmd居然能A? #include< ...

  9. 【UOJ224】短路

    具体可以看UOJmyy的blog,orz 就是一个贪心. #include<bits/stdc++.h> typedef long long ll; using namespace std ...

  10. VO、DTO、DO、PO的概念、区别和用处

    转至:http://qixuejia.cnblogs.com/ 本篇文章主要讨论一下我们经常会用到的一些对象:VO.DTO.DO和PO. 由于不同的项目和开发人员有不同的命名习惯,这里我首先对上述的概 ...