【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)
1150: [CTSC2007]数据备份Backup
Description
你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份。然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣。已知办公楼都位于同一条街上。你决定给这些办公楼配对(两个一组)。每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份。然而,网络电缆的费用很高。当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计2K个办公楼)安排备份。任一个办公楼都属于唯一的配对组(换句话说,这 2K个办公楼一定是相异的)。此外,电信公司需按网络电缆的长度(公里数)收费。因而,你需要选择这 K 对办公楼使得电缆的总长度尽可能短。换句话说,你需要选择这 K 对办公楼,使得每一对办公楼之间的距离之和(总距离)尽可能小。下面给出一个示例,假定你有 5 个客户,其办公楼都在一条街上,如下图所示。这 5 个办公楼分别位于距离大街起点 1km, 3km, 4km, 6km 和 12km 处。电信公司仅为你提供 K=2 条电缆。上例中最好的配对方案是将第 1 个和第 2 个办公楼相连,第 3 个和第 4 个办公楼相连。这样可按要求使用K=2 条电缆。第 1 条电缆的长度是 3km-1km=2km ,第 2 条电缆的长度是 6km-4km=2km。这种配对方案需要总长4km 的网络电缆,满足距离之和最小的要求。Input
输入的第一行包含整数n和k,其中n(2 ≤ n ≤100 000)表示办公楼的数目,k(1≤ k≤ n/2)表示可利用的网络电缆的数目。接下来的n行每行仅包含一个整数(0≤ s ≤1000 000 000), 表示每个办公楼到大街起点处的距离。这些整数将按照从小到大的顺序依次出现。Output
输出应由一个正整数组成,给出将2K个相异的办公楼连成k对所需的网络电缆的最小总长度。
Sample Input
5 2
1
3
4
6
12Sample Output
4HINT
Source
【分析】
这已经很经典了吧。
贪心+一个后悔操作就好了,优先队列优化。
具体见:【BZOJ 2151】http://www.cnblogs.com/Konjakmoyu/p/6284056.html
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 100100 struct node
{
int id,x;
friend bool operator < (node x,node y)
{
return x.x>y.x;
}
}; priority_queue<node > q; int a[*Maxn],lt[*Maxn],nt[*Maxn];
bool mark[*Maxn]; int main()
{
int n,k;
scanf("%d%d",&n,&k);
int now,nw;
scanf("%d",&now);
for(int i=;i<=n;i++)
{
scanf("%d",&nw);
a[i-]=nw-now;
now=nw;
}
n--;
while(!q.empty()) q.pop();
for(int i=;i<=n;i++) nt[i]=i+;nt[n]=-;
for(int i=;i<=n;i++) lt[i]=i-;
for(int i=;i<=n;i++)
{
node xx;
xx.id=i;xx.x=a[i];
q.push(xx);
}
memset(mark,,sizeof(mark));
int ans=,cnt=n;
for(int i=;i<=k;i++)
{
while(mark[q.top().id]) q.pop();
node xx;
xx=q.top();q.pop();
ans+=xx.x;
if(lt[xx.id]==)
{
mark[nt[xx.id]]=;
lt[nt[nt[xx.id]]]=;
}
else if(nt[xx.id]==-)
{
mark[lt[xx.id]]=;
nt[lt[lt[xx.id]]]=-;
}
else
{
mark[nt[xx.id]]=;
mark[lt[xx.id]]=;
cnt++;
nt[lt[lt[xx.id]]]=cnt;
lt[nt[nt[xx.id]]]=cnt;
lt[cnt]=lt[lt[xx.id]];
nt[cnt]=nt[nt[xx.id]];
node nw;
nw.id=cnt;
nw.x=a[lt[xx.id]]+a[nt[xx.id]]-xx.x;
a[cnt]=nw.x;
q.push(nw);
}
}
printf("%d\n",ans);
return ;
}
2017-01-14 10:04:32
【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)的更多相关文章
- BZOJ1150 [CTSC2007] 数据备份Backup 贪心_堆_神题
Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家 ...
- 【BZOJ 1150】[CTSC2007]数据备份Backup
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 选择的连接肯定是相邻的点对. 那么我们处理出来长度为n-1的数组a 其中a[i-1] = dis[i]-dis[i-1] 那么问题就 ...
- BZOJ1150 [CTSC2007]数据备份Backup 贪心 堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1150 题意概括 数轴上面有一堆数字. 取出两个数字的代价是他们的距离. 现在要取出k对数,(一个数 ...
- 【链表】bzoj 1150: [CTSC2007]数据备份Backup
1150: [CTSC2007]数据备份Backup Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1136 Solved: 458[Submit] ...
- 1150: [CTSC2007]数据备份Backup
1150: [CTSC2007]数据备份Backup https://lydsy.com/JudgeOnline/problem.php?id=1150 分析: 堆+贪心. 每次选最小的并一定是最优的 ...
- bzoj1150 [CTSC2007]数据备份Backup 双向链表+堆
[CTSC2007]数据备份Backup Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2727 Solved: 1099[Submit][Stat ...
- 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)
[BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...
- BZOJ1150 [CTSC2007]数据备份Backup 链表+小根堆
BZOJ1150 [CTSC2007]数据备份Backup 题意: 给定一个长度为\(n\)的数组,要求选\(k\)个数且两两不相邻,问最小值是多少 题解: 做一个小根堆,把所有值放进去,当选择一个值 ...
- bzoj 1150: [CTSC2007]数据备份Backup
Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家 ...
随机推荐
- 企业CEO最核心的应该是销售意识
一个企业的本质是赚利润,利润怎么来?靠卖东西,所以企业里面最重要的应该是销售人员.在一些500强的外企里有一个规定,没有做过销售的人是很难升到总经理的,在以色列的军队中,没有当过班长,是不可以被提拔为 ...
- 【BZOJ1926】【SDOI2010】粟粟的书架 [主席树]
粟粟的书架 Time Limit: 30 Sec Memory Limit: 552 MB[Submit][Status][Discuss] Description 幸福幼儿园 B29 班的粟粟是一 ...
- Bzoj4873 [SXOI2017]寿司餐厅
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 64 Solved: 45 Description Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每 ...
- 【BZOJ】1954: Pku3764 The xor-longest Path
[算法]trie树+xor路径 [题解] 套路1:统计从根到每个点的xor路径和,由于xor的自反性,两个点到根的xor路径和异或起来就得到两点间路径和. 然后问题就是找到n个值中异或值最大的两个值, ...
- 撩下Cookie和Session
Cookie Cookie其实还可以用在一些方便用户的场景下,设想你某次登陆过一个网站,下次登录的时候不想再次输入账号了,怎么办?这个信息可以写到Cookie里面,访问网站的时候,网站页面的脚本可以读 ...
- Codeforces Round #482 (Div. 2) B题
题目链接:http://codeforces.com/contest/979/problem/B B. Treasure Hunt time limit per test1 second memory ...
- MongoDB 数据库(1)
数据库 MongoDB (芒果数据库) 数据存储阶段 文件管理阶段 (.txt .doc .xls) 优点 : 数据可以长期保存 可以存储大量的数据 使用简单 缺点 : 数据一致性差 数据查找修改不方 ...
- 网络协议之HTTP协议
HTTP协议详解(真的很经典) 转自:http://blog.csdn.net/gueter/archive/2007/03/08/1524447.aspx Author :Jeffrey 引言 HT ...
- VPS性能综合测试(5):UnixBench工具介绍
UnixBench 介绍 UnixBench 是一个类 unix (Unix, BSD, Linux 等) 系统下的性能测试工具,它是一个开源工具.可以用于测试系统主机的性能. UnixBench 进 ...
- ACE_INET_Addr类 API
ACE_INET_Addr类,在这个ACE_网络框架中,应该是比较重要的辅助类,该类主要封装了C SOCKET 的地址对象,通过外观封装的模式,把struct sockaddr_in封装在内.方便用户 ...