【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)
1150: [CTSC2007]数据备份Backup
Description
你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份。然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣。已知办公楼都位于同一条街上。你决定给这些办公楼配对(两个一组)。每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份。然而,网络电缆的费用很高。当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计2K个办公楼)安排备份。任一个办公楼都属于唯一的配对组(换句话说,这 2K个办公楼一定是相异的)。此外,电信公司需按网络电缆的长度(公里数)收费。因而,你需要选择这 K 对办公楼使得电缆的总长度尽可能短。换句话说,你需要选择这 K 对办公楼,使得每一对办公楼之间的距离之和(总距离)尽可能小。下面给出一个示例,假定你有 5 个客户,其办公楼都在一条街上,如下图所示。这 5 个办公楼分别位于距离大街起点 1km, 3km, 4km, 6km 和 12km 处。电信公司仅为你提供 K=2 条电缆。上例中最好的配对方案是将第 1 个和第 2 个办公楼相连,第 3 个和第 4 个办公楼相连。这样可按要求使用K=2 条电缆。第 1 条电缆的长度是 3km-1km=2km ,第 2 条电缆的长度是 6km-4km=2km。这种配对方案需要总长4km 的网络电缆,满足距离之和最小的要求。Input
输入的第一行包含整数n和k,其中n(2 ≤ n ≤100 000)表示办公楼的数目,k(1≤ k≤ n/2)表示可利用的网络电缆的数目。接下来的n行每行仅包含一个整数(0≤ s ≤1000 000 000), 表示每个办公楼到大街起点处的距离。这些整数将按照从小到大的顺序依次出现。Output
输出应由一个正整数组成,给出将2K个相异的办公楼连成k对所需的网络电缆的最小总长度。
Sample Input
5 2
1
3
4
6
12Sample Output
4HINT
Source
【分析】
这已经很经典了吧。
贪心+一个后悔操作就好了,优先队列优化。
具体见:【BZOJ 2151】http://www.cnblogs.com/Konjakmoyu/p/6284056.html
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 100100 struct node
{
int id,x;
friend bool operator < (node x,node y)
{
return x.x>y.x;
}
}; priority_queue<node > q; int a[*Maxn],lt[*Maxn],nt[*Maxn];
bool mark[*Maxn]; int main()
{
int n,k;
scanf("%d%d",&n,&k);
int now,nw;
scanf("%d",&now);
for(int i=;i<=n;i++)
{
scanf("%d",&nw);
a[i-]=nw-now;
now=nw;
}
n--;
while(!q.empty()) q.pop();
for(int i=;i<=n;i++) nt[i]=i+;nt[n]=-;
for(int i=;i<=n;i++) lt[i]=i-;
for(int i=;i<=n;i++)
{
node xx;
xx.id=i;xx.x=a[i];
q.push(xx);
}
memset(mark,,sizeof(mark));
int ans=,cnt=n;
for(int i=;i<=k;i++)
{
while(mark[q.top().id]) q.pop();
node xx;
xx=q.top();q.pop();
ans+=xx.x;
if(lt[xx.id]==)
{
mark[nt[xx.id]]=;
lt[nt[nt[xx.id]]]=;
}
else if(nt[xx.id]==-)
{
mark[lt[xx.id]]=;
nt[lt[lt[xx.id]]]=-;
}
else
{
mark[nt[xx.id]]=;
mark[lt[xx.id]]=;
cnt++;
nt[lt[lt[xx.id]]]=cnt;
lt[nt[nt[xx.id]]]=cnt;
lt[cnt]=lt[lt[xx.id]];
nt[cnt]=nt[nt[xx.id]];
node nw;
nw.id=cnt;
nw.x=a[lt[xx.id]]+a[nt[xx.id]]-xx.x;
a[cnt]=nw.x;
q.push(nw);
}
}
printf("%d\n",ans);
return ;
}
2017-01-14 10:04:32
【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)的更多相关文章
- BZOJ1150 [CTSC2007] 数据备份Backup 贪心_堆_神题
Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家 ...
- 【BZOJ 1150】[CTSC2007]数据备份Backup
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 选择的连接肯定是相邻的点对. 那么我们处理出来长度为n-1的数组a 其中a[i-1] = dis[i]-dis[i-1] 那么问题就 ...
- BZOJ1150 [CTSC2007]数据备份Backup 贪心 堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1150 题意概括 数轴上面有一堆数字. 取出两个数字的代价是他们的距离. 现在要取出k对数,(一个数 ...
- 【链表】bzoj 1150: [CTSC2007]数据备份Backup
1150: [CTSC2007]数据备份Backup Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1136 Solved: 458[Submit] ...
- 1150: [CTSC2007]数据备份Backup
1150: [CTSC2007]数据备份Backup https://lydsy.com/JudgeOnline/problem.php?id=1150 分析: 堆+贪心. 每次选最小的并一定是最优的 ...
- bzoj1150 [CTSC2007]数据备份Backup 双向链表+堆
[CTSC2007]数据备份Backup Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2727 Solved: 1099[Submit][Stat ...
- 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)
[BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...
- BZOJ1150 [CTSC2007]数据备份Backup 链表+小根堆
BZOJ1150 [CTSC2007]数据备份Backup 题意: 给定一个长度为\(n\)的数组,要求选\(k\)个数且两两不相邻,问最小值是多少 题解: 做一个小根堆,把所有值放进去,当选择一个值 ...
- bzoj 1150: [CTSC2007]数据备份Backup
Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家 ...
随机推荐
- 【BZOJ】1014 [JSOI2008]火星人prefix
[算法]splay [题解]对于每个结点维护其子树串的hash值,前面为高位,后面为低位. sum[x]=sum[L]*base[s[R]+1]+A[x]*base[s[R]]+sum[R],其中su ...
- 面试精选之Promise
常见Promise面试题 我们看一些 Promise 的常见面试问法,由浅至深. 1.了解 Promise 吗? 2.Promise 解决的痛点是什么? 3.Promise 解决的痛点还有其他方法可以 ...
- CSS animation怎么使用?(山东数漫江湖)
animation可以为很多CSS属性添加动画,比如: color, background-color, height和width.animation的动画需要使用@keyframes来定义,随后被a ...
- 20151024_004_C#基础知识(C#中的访问修饰符,继承,new关键字,里氏转换,is 和 as,多态,序列化与反序列化)
1:C#中的访问修饰符 public: 公共成员,完全公开,没有访问限制. private: 私有的,只能在当前类的内部访问. protected: 受保护的,只能在当前类的内部以及该类的子类中访问. ...
- fundamentals of the jQuery library
1.why is jquery Only 32kB minified and gzipped. Can also be included as an AMD module Supports CSS3 ...
- windows下安装python过程
方法一:如果你的电脑没有安装python,推荐使用anaconda(自带python环境,同时自带各种第三方库,可以省去很多麻烦) 这里提供两个下载地址:1,.官网https://www.anacon ...
- DesignPattern
目录
- vs 2015 插件 supercharger 破解方式
亲测有效:效果如图 方法如下: 1.打开Supercharger的options; 2.点击Pricing & Registration 3.复制 license 然后再按Paste &am ...
- Kotlin 学习使用之旅(二)
为什么从二开始呢?再此之前已经有了一篇了,那是刚知道kotlin的时候草(chao)来(chao)的并且学习一篇, 这次是自己在项目中正式使用并且遇到的一些问题记录,供kotlin新入门的童鞋参考,避 ...
- Python——turtle生成图片保存
代码示例如下: from Tkinter import * from turtle import * import turtle forward(100) ts = turtle.getscreen( ...
