题目分析

模板题。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+7;
int n,a[405][405],b[405][405];
int Pow(int x,int k){
int ret=1;
while(k){
if(k&1)ret=(ll)ret*x%mod;
k>>=1;x=(ll)x*x%mod;
}
return ret;
}
int Inv(int x){return Pow(x,mod-2);}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++)b[i][i]=1;
for(int i=1;i<=n;i++){
int now=i;
while(now<=n&&!a[now][i])now++;
if(now==n+1){puts("No Solution");return 0;}
if(now^i)swap(a[now],a[i]),swap(b[now],b[i]);
int inv=Inv(a[i][i]);
for(int j=1;j<=n;j++)
a[i][j]=(ll)a[i][j]*inv%mod,
b[i][j]=(ll)b[i][j]*inv%mod;
for(int j=1;j<=n;j++){
if(j==i)continue;
int p=(ll)a[j][i];
for(int k=1;k<=n;k++)
a[j][k]=(a[j][k]-(ll)a[i][k]*p%mod+mod)%mod,
b[j][k]=(b[j][k]-(ll)b[i][k]*p%mod+mod)%mod;
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cout<<b[i][j]<<" \n"[j==n];
}

洛谷 P4783 【模板】矩阵求逆的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  3. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  4. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  5. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  6. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  7. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  8. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  9. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

  10. [洛谷P3806] [模板] 点分治1

    洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...

随机推荐

  1. RabbitMQ---3、c#实现

    1.EasyNetQ组件的使用 EasyNetQ组件的使用方式比较简单,跟很多组件都类似,例如:建立连接,进行操作做等等,对于EasyNetQ组件也是如此.(mq的升级,用于简化rabbitmq应用代 ...

  2. html制作chm格式开源文档

    在主界面点击生成器,找到网页所在的文件夹. 然后用编译,还是找到网页文件夹.根据需要设置.TOC 那一项是目录,请根据需要修改. 特别要注意的是,预设那里,点击那个配置图标,会打开如下图的预设编辑器. ...

  3. ashx 绝对路径得到物理路径

    //先得到模板页所在的路径 string phyPath = context.Server.MapPath("/p02style.html"); //得到模板的所有内容 strin ...

  4. <深入理解JavaScript>学习笔记(4)_立即调用的函数表达式

    前言 大家学JavaScript的时候,经常遇到自执行匿名函数的代码,今天我们主要就来想想说一下自执行.(小菜理解:的确看到好多,之前都不知道这是自执行匿名函数) 在详细了解这个之前,我们来谈了解一下 ...

  5. [转] SQL函数说明大全

    from http://www.cnblogs.com/moss_tan_jun/archive/2010/08/23/1806861.html 一旦成功地从表中检索出数据,就需要进一步操纵这些数据, ...

  6. Spring学习(二)--- Bean 作用域

    概述 本文介绍的Spring 中bean的作用域. 问题 : bean的作用域有几种,有那些应用场景 bean 装配过程 下图为bean在容器中从创建到销毁的若干阶段. bean 作用域 作用域介绍 ...

  7. 【11】Redis .net 实例 StackExchange.Redis框架

    1.创建测试项目并下载nuget包:StackExchange.Redis PM> Install-Package StackExchange.Redis 2.创建 RedisHelper类 p ...

  8. golang 的md5加密

    先看实现代码: package main import (     "crypto/md5"     "encoding/hex"     "fmt& ...

  9. luogu P3065 first——trie树相关

    题目描述 Bessie has been playing with strings again. She found that by changing the order of the alphabe ...

  10. C# 将html文本转化为 文本内容方法TextNoHTML

    不记得在哪看过这个,挺实用的 /// <summary> /// 将html文本转化为 文本内容方法TextNoHTML /// </summary> /// <para ...